Solutions to Test \#3

1a) False. An inflection point occurs where $f^{\prime \prime}$ changes sign which it cannot do at $x=5$ if $f^{\prime \prime}(5) \neq 0$.

1b) True. The function is strictly increasing, so it does not have an absolute maximum on $(-\infty, \infty)$.

1c) False. Consider $\int 1 \cdot 1 d x=\int 1 d x=x+C$ while

$$
\left(\int 1 d x\right)\left(\int 1 d x\right)=(x+C)(x+D)=x^{2}+E x+F
$$

1d) True. Any continuous function on a closed, finite interval has an absolute minimum on that interval (the extreme value theorem).

1e) False. You need, in addition, that the function f be differentiable on $(0,4)$ to apply Rolle's Theorem (or MVT).

1f) True because $y=3$ is a horizontal asymptote.

2a)

$$
\int\left(3 \cos x+\frac{1}{\sqrt{1-x^{2}}}\right) d x=3 \sin (x)+\arcsin (x)+C
$$

2b)

$$
\int \frac{x^{2}-6}{\sqrt{x}} d x=\int x^{3 / 2}-6 x^{-1 / 2} d x=\frac{2}{5} x^{5 / 2}-6(2) x^{1 / 2}+C
$$

2c) Make the substitution $u=\tan (x)$ so $d u=\sec ^{2}(x) d x$ and the integral becomes

$$
\int \tan (x) \sec ^{2}(x) d x=\int u d u=\frac{1}{2} u^{2}+C=\frac{1}{2} \tan ^{2}(x)+C
$$

2d) Make the substitution $u=-3 x^{2}$ do $d u=-6 x d x$ or $-(1 / 6) d u=x d x$ and the integral becomes

$$
\int x e^{-3 x^{2}} d x=\int-\frac{1}{6} e^{u} d u=-\frac{1}{6} e^{u}+C=-\frac{1}{6} e^{-3 x^{2}}+C
$$

2e) Make the substitution $u=x^{2}$ so $d u=2 x d x$ or $(1 / 2) d u=x d x$ and the integral becomes:

$$
\int \frac{x}{x^{4}+1} d x=\int \frac{1}{2} \frac{1}{u^{2}+1} d u=\frac{1}{2} \arctan (u)+C=\frac{1}{2} \arctan \left(x^{2}\right)+C
$$

3) We compute $f^{\prime}(x)=3 x^{2}-6 x+1$. Hence $f(x)$ is differentiable on all of $[-2,3]$ and critical points for $f(x)$ only occur where $0=f^{\prime}(x)=3 x^{2}-6 x=3 x(x-2)$, i.e. at $x=0,2$. We compare the value of $f(x)$ at these critical points and at the end points:

$$
\begin{aligned}
f(-2) & =(-2)^{3}-3(-2)^{2}+1=-8-12+1=-19 \\
f(0) & =0^{3}-3(0)^{2}+1=1 \\
f(2) & =2^{3}-3(2)^{2}+1=8-12+1=-3 \\
f(3) & =3^{3}-3(3)^{2}+1=1
\end{aligned}
$$

Hence, the absolute minimum is $f(-2)=-19$ while the absolute maximum is $f(0)=$ $f(3)=1$.

4a) Because

$$
f(x)=\frac{1}{x^{2}-4 x+3}=\frac{1}{(x-3)(x-1)}
$$

we see that $f(x)$ has vertical asymptotes at $x=1$ and $x=3$. By the garbage rule,

$$
\lim _{x \rightarrow \pm \infty} \frac{1}{x^{2}-4 x+3}=\lim _{x \rightarrow \infty} \frac{1}{x^{2}}=0
$$

so $f(x)$ has a horizontal asymptote at $y=0$.

4b) We compute:

$$
f^{\prime}(x)=\frac{-(2 x-4)}{\left(x^{2}-4 x+3\right)^{2}}=\frac{-(2 x-4)}{\left((x-3)^{2}(x-1)^{2}\right.}
$$

Because $(x-3)^{2}(x-1)^{2} \geq 0$, we see that the sign of $f^{\prime}(x)$ is the same as that of $-(2 x-4)$ which is positive on $(-\infty, 2)$ and negative on $(2, \infty)$. Noting that $f^{\prime}(x)$ is not defined at $x=1$ and at $x=3$, we can then say that $f^{\prime}(x)>0$ for $x \in(-\infty, 1)$ and for $x \in(1,2)$ while $f^{\prime}(x)<0$ for $x \in(2,3)$ and $x \in(3, \infty)$. Hence $f(x)$ is increasing on $(-\infty, 1)$ and on $(1,2)$ while $f(x)$ is decreasing on 2,3$)$ and on $(3, \infty)$.

4c) Sketch the graph.

5a) There are no vertical asymptotes as $f(x)$ is defined for all $x \in(-\infty, \infty)$ and $\lim _{x \rightarrow \pm \infty} \ln (1+$ $\left.x^{2}\right)=\infty$ so there are no horizontal asymptotes.

5b) We compute:

$$
f^{\prime}(x)=\frac{2 x}{1+x^{2}}
$$

Because $1+x^{2}>0$ for all x, the sign of $f^{\prime}(x)$ equals that of $2 x$. Hence, $f(x)$ is decreasing on $(-\infty, 0)$ and increasing on $(0, \infty)$.

5c) We compute

$$
f^{\prime \prime}(x)=\frac{2\left(1+x^{2}\right)-2 x(2 x)}{\left(1+x^{2}\right)^{2}}=\frac{2-2 x^{2}}{\left(1+x^{2}\right)^{2}}=\frac{2(1-x)(1+x)}{\left(1+x^{2}\right)^{2}}
$$

Because $\left(1+x^{2}\right)^{2}>0$ for all x, the sign of $f^{\prime \prime}$ equals that of $2(1-x)(1+x)$. Hence, $f^{\prime \prime}(x)<0$ for $x \in(-\infty, 1)$ and for $x \in(1, \infty)$ while $f^{\prime \prime}(x)>0$ for $x \in(-1,1)$. Thus $f(x)$ is concave down on $(-\infty, 1)$ and on $(1, \infty)$ while it is concave up on $(-\infty, 1)$. Observe that there are inflection points at $x= \pm 1$.

5d) Sketch the graph.

6a) Using L'Hopital's rule, we compute

$$
\lim _{x \rightarrow 0} \frac{1-\cos (2 x)}{x^{2}} \stackrel{\text { L.H. }}{=} \lim _{x \rightarrow 0} \frac{2 \sin (2 x)}{2 x}=\lim _{x \rightarrow 0} \frac{\sin (2 x)}{x} \stackrel{\text { L.H. }}{=} \lim _{x \rightarrow 0} \frac{2 \cos (2 x)}{1}=\frac{2(1)}{1}=2
$$

6b) We rewrite the limit as:

$$
\lim _{x \rightarrow 0}(1+5 x)^{\frac{2}{x}}=\lim _{x \rightarrow 0} \exp \left(\frac{2}{x} \ln (1+5 x)\right)
$$

We compute

$$
\lim _{x \rightarrow 0} \frac{2 \ln (1+5 x)}{x}=\stackrel{\text { L.H. }}{=} \lim _{x \rightarrow 0} \frac{\frac{2}{1+5 x} \cdot 5}{1}=\lim _{x \rightarrow 0} \frac{10}{1+5(0)}=10 .
$$

Hence, the limit equals,

$$
\lim _{x \rightarrow 0} \exp \left(\frac{2}{x} \ln (1+5 x)\right)=\exp \left(\lim _{x \rightarrow 0} \frac{2}{x} \ln (1+5 x)\right)=e^{10}
$$

7) Let ℓ, w be the length and width of the top and bottom of the box and let h be the height. We want to find the maximum value for the volume,

$$
V=\ell w h
$$

We are told $\ell=2 w$. The surface area of the box is

$$
1500=2 \ell w+2 \ell h+2 w h
$$

Substituting in $\ell=2 w$, this gives us the relation between w and h,

$$
1500=4 w^{2}+4 w h+2 w h=4 w^{2}+6 w h
$$

We solve this for h in terms of w and get

$$
h=\frac{1500-4 w^{2}}{6 w}
$$

Then, we can write the volume as a function of w by:

$$
V=\ell w h=2 w^{2} h=2 w^{2} \frac{1500-4 w^{2}}{6 w}=\frac{1}{3}\left(1500 w-4 w^{3}\right)
$$

The constraints $w>0$ and $h=\left(1500-4 w^{2}\right) /(6 w)>0$ imply that $1500>4 w^{2}$ or $w<$ $\sqrt{1500 / 4}=\sqrt{375}=5 \sqrt{15}$. Hence, we are trying to find the absolute maximum of $V(w)$ on the interval $(0,5 \sqrt{15})$. We compute:

$$
V^{\prime}(w)=\frac{1}{3}\left(1500-12 w^{2}\right)=500-4 w^{2}
$$

Thus $V^{\prime}(w)=0$ implies $500=4 w^{2}$ or $w= \pm 125= \pm 5 \sqrt{5}$. Since $V^{\prime \prime}(w)=-8 w<0$, the function $V(w)$ is always concave down, so the critical point $w=5 \sqrt{5}$ must be an absolute maximum. Hence, the desired dimensions are:

$$
w=5 \sqrt{5}, \ell=2 w=10 \sqrt{5}, h=\frac{1500-4 w^{2}}{6 w}=\frac{1500-4(125)}{30 \sqrt{5}}=\frac{1000}{30 \sqrt{5}} .
$$

8a) Because $a=v^{\prime}(t)$, we have

$$
v(t)=\int a d t=a t+C_{1}
$$

We use the initial condition $v_{0}=v(0)$ to compute $v_{0}=a(0)+C_{1}$ and get $C_{1}=v_{0}$. Thus

$$
v(t)=a t+v_{0}
$$

Because $a t+v_{0}=s^{\prime}(t)$, we have

$$
s(t)=\int a t+v_{0} d t=\frac{1}{2} a t^{2}+v_{0} t+C_{2}
$$

We use the initial condition $s_{0}=s(0)$ to compute $s_{0}=s(0)=(1 / 2) a(0)^{2}+v_{0}(0)+C_{2}$ and get $C_{2}=s_{0}$. Thus,

$$
s(t)=\frac{1}{2} a t^{2}+v_{0} t+s_{0} .
$$

8b) Because acceleration is constant, we have $a=-32$ and by (8 a), we can write

$$
s(t)=-16 t^{2}+v_{0} t+s_{0} .
$$

We set $s_{0}=s(0)=0$ because the arrow is initially on the ground. Using the given information that $s(3)=120$, we solve for v_{0} :

$$
120=s(3)=-16(3)^{2}+v_{0}(3),
$$

and get $3 v_{0}=120+16(9)=264$ so $v_{0}=264 / 3=88$ (in feet per second).

