NAME: \qquad Panther ID:

Background Homework - Calculus 1, Fall 2015 - due Thursday Aug. 27

1. (2 pts) Factor.

$$
x^{2}-2 x-15=
$$

2. (4 pts) Simplify as much as possible (assume $x \neq \pm 2$).

$$
\frac{4 x}{x^{2}-4}-\frac{2}{x+2}=
$$

3. (4 pts) Simplify as much as possible.
(a) $\left(\frac{4}{25}\right)^{-1 / 2}=$
(b) $\frac{\sqrt[3]{a^{7} b}}{\sqrt[3]{a b^{4}}}=$
4. (4 pts) (a) (1 pt) Find the distance between the points $(0,2),(2,-2)$. (OK to leave answer as a square-root.)
(b) (3 pts) Find the equation of the line that contains the points $(0,2),(2,-2)$.
5. (6 pts) Sketch the graph of each of the following functions and mark the coordinates of axis intercepts.
(a) $f(x)=3-x^{2}$
(b) $g(x)=2 x-3$
6. (6 pts) True or False? Assume a, b are positive real numbers. Circle "True" if the equality holds for all a, b. Otherwise, circle "False".

$$
\begin{array}{rr}
\sqrt{a^{2}+b^{2}}=a+b & \text { True False } \\
\frac{1}{a}+\frac{1}{b}=\frac{a+b}{a b} & \text { True False } \\
\frac{1}{a+b}=\frac{1}{a}+\frac{1}{b} & \text { True False } \\
\ln (a+b)=\ln a+\ln b & \text { True False } \\
\ln \left(a^{b}\right)=b \ln a & \text { True False } \\
\sec ^{2} a=1+\tan ^{2} a & \text { True False } \\
\text { 7. }(6 \mathrm{pts}) \text { Fill in the exact values: } & \\
\cos (\pi / 3)= & \tan (5 \pi / 4)= \\
\ln ^{2}\left(\frac{1}{e^{2}}\right)= & \sin ^{-1}(1)= \\
\log _{10}(1000)= &
\end{array}
$$

7. (6 pts) Fill in the exact values:
8. (6 pts) Consider the functions $f(x)=\sqrt{4-x^{2}}$ and $g(x)=x^{2}+2$.
(a) (2 pts) Find the domain of the function $f(x)$.
(b) (2 pts) Find a formula for the composition $(g \circ f)(x)$.
(c) (2 pts) Compute and simplify the expression for $\frac{g(x+h)-g(x)}{h}$.
9. (12 pts) Find all solutions of the following equations (3 pts each):
(a) $x^{3}-5 x^{2}+6 x=0$
(b) $5 \cdot\left(3^{2 x}\right)=7 \quad$ Leave your answer as a logarithm for this one.
(c) $2 \cos x+1=0$

OK to find all solutions $x \in[0,2 \pi]$ for this one.
(d) $a x^{2}+b x+c=0$

I want to check you know the quadratic formula.
10. (4 pts) In the right-angle triangle $\triangle A B C$ the right angle is at B and the sides $B A$ and $B C$ have lengths 3 cm and 4 cm , respectively. Let D and E be points on the sides $B A$ and $B C$, respectively, so that the line $D E$ is parallel to $A C$ and the segment $A D$ has length of 1 cm . What is the length of the segment $D E$?

