\qquad
Worksheet Aug. 24 - MAC 2311, Fall 2015

1) Assume you are driving along the turnpike.
(a) At 9am, you are at mile marker 20. At 12noon, you are at mile marker 240 . What has been your average velocity between 9am and 12noon?
(b) Now assume that t hours after 9am, you are at mile marker $s(t)$. How would you compute your average velocity over the time interval $\left[t_{1}, t_{2}\right]$?
(c) Should your instantaneous velocity during the time interval $\left[t_{1}, t_{2}\right]$ always equal to the average velocity?
2) Let $s(t)=-16 t^{2}+96 t$ be the height (in feet) of a stone above the ground t seconds after it is thrown upwards.
(a) Compute the average velocity of the stone in the first two seconds.
(b) Sketch the graph of the function $s(t)=-16 t^{2}+96 t$.
(c) On this graph, give a geometric interpretation of the average velocity you computed.
(d) What is the average velocity in the first tenth of a second?
(e) What is the average velocity over the interval $[0, h]$?
(f) What happens to this average velocity over the interval $[0, h]$ as h gets closer to zero? Can you think of a meaning for this "limit" as h goes to zero?
(g) Can you do this computation for average velocities over intervals $\left[t_{0}, t_{0}+h\right]$? What would the limit of this average velocity as h goes to zero represent?
