NAME: \qquad Panther ID: \qquad

Worksheet Sep. 3 - MAC 2311, Fall 2015

1. In the following picture (to be inserted) B is the point of coordinates $(1,0), A$ is a point on the unit circle in the first quadrant, and denote by θ the angle $\angle A O B$. Denote also by C the point at the intersection of the line $O A$ with the vertical line through B.
(a) Assuming $\theta=20^{\circ}$ compute each of the following: the x and y coordinates of the point A; the length of the segment $B C$; the length of the arc $A B$; the area of the triangle $A O B$; the area of the sector $A O B$; the area of the triangle $O B C$. It's OK if your answers contain trigonometric expressions. Do not try to evaluate them.
(b) With the same picture as above, for an arbitrary value of the angle θ, (θ in radians between 0 and $\pi / 2$), find expressions in terms of θ for the area of the triangle $A O B$, the area of the sector $A O B$, the area of the triangle $O B C$.
(c) Considering the obvious inequality between the areas, what (double) inequality have you proved?
(d) After a couple of algebraic manipulations, that you should describe, your inequality in part (c) can be re-written as

$$
\cos \theta \leq \frac{\sin \theta}{\theta} \leq 1
$$

(e) Explain intuitively in one or two sentences why the (double) inequality in (d) implies that

$$
\lim _{\theta \rightarrow 0^{+}} \frac{\sin \theta}{\theta}=1
$$

There is a rigorous reason for this last step, the so called "Squeeze Theorem" for limits, which will be briefly explained in lecture. With steps (a)-(e), you discovered the proof of the famous limit

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

This limit has many computational applications, some of which you will discover in the next exercise.
2. Compute each of the following limits:
(a) $\lim _{x \rightarrow 0} \frac{\sin (5 x)}{x}=$
$\lim _{x \rightarrow 0} \frac{\sin (a x)}{x}=$
(b) $\lim _{x \rightarrow+\infty} \frac{\sin x}{x}$
(c) $\lim _{x \rightarrow 0} \frac{\tan (3 x)}{x}=$
$\lim _{x \rightarrow 0} \frac{\tan (b x)}{x}=$
(d) $\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x}$
(e) $\lim _{x \rightarrow 0} \frac{\tan ^{2}(3 x)}{x \sin (5 x)}$
(f) $\lim _{x \rightarrow+\infty} x \tan (3 / x)$ Hint: Use substitution technique.

