NAME: \qquad

Panther ID:

\qquad

Worksheet on the limit definition
 - MAC 2311, Fall 2015

1. Find the distance between:
(a) 2 and 5;
(b) 5 and 2 ;
(c) -3 and 2;
(d) 5.2 and -3.7 ;
(e) a and b, with a and b real numbers
2. (a) Sketch the set of points $(x, 0)$ on the x-axis such that $|x-3|<0.7$. Then sketch the set of points $(x, 0)$ on the x-axis such that $0<|x-3|<0.7$. How are these two sets different?
(b) Describe the set of points on the x axis whose distance from $(5,0)$ is less than 0.1 in two ways:
(i) Sketch this set;
(ii) Write an inequality characterizing this set (hint: look at (2a)).
3. Describe the set of points on the y axis whose distance from $(0,3)$ is less than 0.2 in two ways:
(i) Sketch this set;
(ii) Write an inequality characterizing this set (hint: look at (2a)).
4. In this problem, we will use the $\epsilon-\delta$ definition to prove that $\lim _{x \rightarrow 5}(2 x+3)=13$.
(a) Identify $f(x), a, L$ in this case.
(b) Compute $|f(x)-L|$ in this case (you want in your result to see the expression $|x-a|$).
(c) Using your computation in (b), show that if $|x-5|<0.1$ then $|f(x)-13|<0.2$.

More generally, show that if $\delta>0$ is a positive number (not yet specified) then if $|x-5|<\delta$ then it follows, in this case, that $|f(x)-13|<2 \delta$.
(d) Based on part (c), if $\epsilon>0$ is given, how would you choose $\delta>0$ in this case?
(e) With your choice from part (d), show that if $|x-5|<\delta$ then $|f(x)-13|<\epsilon$.
5. Repeat the steps in the previous problem to show that $\lim _{x \rightarrow 3}(100 x-1)=299$.
6. Prove that $\lim _{x \rightarrow-3}(2 x-7)=-13$.
7. True or false. Answer and justify your answer.
(a) If $\lim _{x \rightarrow 2} f(x)=f(2)=5$, then $4.9<f(x)<5.1$ for all x in a small enough interval around 2 .
(b) If $\lim _{x \rightarrow 2} f(x)=f(2)=5$, then $f(x) \neq 4.99$ for all x in a small enough interval around 2 .
7. (Challenge problem) Prove $\lim _{x \rightarrow 2} x^{2}=4$.

