NAME:		Panther ID:
Worksheet on the limit definition		- MAC 2311, Fall 2015
1. Find the distance between:		
(a) 2 and 5;	(b) 5 and 2;	(c) -3 and 2;
(d) $5.2 \text{ and } -3.7;$		(e) a and b , with a and b real numbers

2. (a) Sketch the set of points (x, 0) on the x-axis such that |x - 3| < 0.7. Then sketch the set of points (x, 0) on the x-axis such that 0 < |x - 3| < 0.7. How are these two sets different?

(b) Describe the set of points on the x axis whose distance from (5,0) is less than 0.1 in two ways:(i) Sketch this set;

(ii) Write an inequality characterizing this set (hint: look at (2a)).

3. Describe the set of points on the y axis whose distance from (0,3) is less than 0.2 in two ways:(i) Sketch this set;

(ii) Write an inequality characterizing this set (hint: look at (2a)).

4. In this problem, we will use the $\epsilon\text{-}\delta$ definition to prove that $\lim_{x\to 5}(2x+3)=13$.

(a) Identify f(x), a, L in this case.

(b) Compute |f(x) - L| in this case (you want in your result to see the expression |x - a|).

(c) Using your computation in (b), show that if |x-5| < 0.1 then |f(x) - 13| < 0.2.

More generally, show that if $\delta > 0$ is a positive number (not yet specified) then if $|x-5| < \delta$ then it follows, in this case, that $|f(x) - 13| < 2\delta$.

(d) Based on part (c), if $\epsilon > 0$ is given, how would you choose $\delta > 0$ in this case?

(e) With your choice from part (d), show that if $|x-5| < \delta$ then $|f(x) - 13| < \epsilon$.

5. Repeat the steps in the previous problem to show that $\lim_{x\to 3}(100x-1)=299$.

6. Prove that $\lim_{x \to -3} (2x-7) = -13$.

7. True or false. Answer and justify your answer.

(a) If $\lim_{x\to 2} f(x) = f(2) = 5$, then 4.9 < f(x) < 5.1 for all x in a small enough interval around 2.

(b) If $\lim_{x\to 2} f(x) = f(2) = 5$, then $f(x) \neq 4.99$ for all x in a small enough interval around 2.

7. (Challenge problem) Prove $\lim_{x\to 2} x^2 = 4$.