Worksheet 09-24 - on Sections 2.3 and 2.2:

LECTURE INTRO: Review limit definition of derivative, notation, and formulas for derivatives of c, x, x^{2}, \sqrt{x}.

1. Use the limit definition of the derivative, to find the formula for the derivative of $\frac{1}{x}$.
2. In this problem, you will derive an expression for the derivative of x^{n} where $n=1,2,3, \ldots$.
a) Show the following equalities:

$$
\begin{aligned}
& a^{2}-b^{2}=(a-b)(a+b) \\
& a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) \\
& a^{4}-b^{4}=(a-b)\left(a^{3}+a^{2} b+a b^{2}+b^{3}\right)
\end{aligned}
$$

b) Using the equalities in (a) as examples, find a polynomial $p(a, b)$ so that

$$
a^{n}-b^{n}=(a-b) p(a, b)
$$

c) Write down the limit definition of $(d / d x) x^{n}$ and use the result from (b) to compute this limit.
3. Compute the following derivatives:
a) $\frac{d}{d x} \pi^{2}$
b) $\frac{d}{d x} x^{12}$

LECTURE BREAK: Derive rules for $(c f)^{\prime}$ and $(f+g)^{\prime}$.
4. Use this table of values

x	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$f^{\prime}(x)$	3	5	2	1	4
$g^{\prime}(x)$	2	4	3	1	5

to calculate the value of these derivatives:

1. $\left.\frac{d}{d x}\left[\frac{3}{2} f(x)\right]\right|_{x=1}$
2. $\left.\frac{d}{d x}[f(x)-g(x)]\right|_{x=2}$
3. $\left.\frac{d}{d x}[3 g(x)-4 f(x)]\right|_{x=3}$
4. Compute the following derivatives:
a) $\frac{d}{d x}\left(4 x^{3}\right)$
b) $\frac{d}{d x}\left(7 x^{5}-2 x^{4}+3 x+12\right)$
c) A general polynomial of degree n has the form

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{2} x^{2}+a_{1} x+a_{0},
$$

where $a_{n}, a_{n-1}, \ldots, a_{1}, a_{0}$ are constant coefficients, $a_{n} \neq 0$. Find the derivative of P.
6. Find the equation of the line tangent to the curve $y=4 x^{4}-3 x^{3}$ at $(2,40)$
7. The equation $y^{\prime \prime}+y^{\prime}-2 y=x^{2}$ is called a differential equation because it involves an unknown function $y(x)$ and its derivatives y^{\prime} and $y^{\prime \prime}$. Find constants A, B, C such that the function $y=A x^{2}+B x+C$ satisfies this equation. (There is a separate course dedicated to Differential Equations.)
8. Pb. 73 section 2.3 textbook

LECTURE BREAK: Prove that differentiability implies continuity and note the converse is not true.
9. Consider the function

$$
g(x)= \begin{cases}x^{3}+1 & \text { if } x \leq 1 \\ 3-x & \text { if } x>1\end{cases}
$$

(a) Is $g(x)$ continuous everywhere? Justify your answer.
(b) Is $g(x)$ differentiable everywhere? Justify your answer.
(c) Find a formula for $g^{\prime}(x)$ at the points where it exists.
10. Pb. 26 section 2.2 textbook
11. Pb. 42 section 2.2 textbook

