MAC 2311: Worksheet 10/01/2015 - Chain rule:

LECTURE INTRO: Give or derive

$$
\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x) .
$$

1) We will use the chain rule to compute the derivative of $\left(\sqrt{1+x^{2}}\right)$.
a) Find functions $f(u)$ and $g(x)$ so that $\sqrt{1+x^{2}}=f(g(x))$.
b) Compute $f^{\prime}(u)$ and $g^{\prime}(x)$.
c) Use the chain rule formula and your computations in (b) to compute

$$
\frac{d}{d x} \sqrt{1+x^{2}}
$$

2) We will use the chain rule to compute the derivative of $\tan \left(t^{2}\right)$.
a) Find functions $f(u)$ and $g(t)$ so that $\tan \left(t^{2}\right)=f(g(t))$.
b) Compute $f^{\prime}(u)$ and $g^{\prime}(t)$.
c) Use the chain rule formula and your computations in (b) to compute

$$
\frac{d}{d t} \tan \left(t^{2}\right) .
$$

3) Use the chain rule and other rules of differentiation as needed to compute the derivatives of the following functions
1. $f(x)=\frac{1}{\sqrt{1+x^{2}}}$
2. $v(t)=\cos ^{2}(3 t)$
3. $h(x)=x\left(x^{9}+2\right)^{1 / 2}$
4) Consider the function $y=\sqrt{x^{2}-9}$. Find the equation of the line tangent to this function at $x=5$.
5) Suppose that the energy used by a factory is given (in megawatt-hours, MWh) by

$$
E(t)=200 t+\frac{1200}{\pi} \sin \left(\frac{\pi t}{12}\right)
$$

where $0 \leq t \leq 24$ is measured in hours after noon.

1. Calculate the power, $P(t)=E^{\prime}(t)$, consumed by this factory. What are the units in this case?
2. When is the power consumption highest?
3. When is the power consumption lowest?
4. Make a sketch of the power consumption from $t=0$ to $t=24$.
6) Use the chain rule and other rules of differentiation as needed to compute the derivatives of the following functions
1. $g(x)=\sin (x \cos (x))$
2. $f(x)=\sqrt{\csc \left(\sin ^{2} x\right)}$
3. $j(x)=\sec \left(3+x^{2} \tan (3 x)\right)$
