NAME: \qquad
MAC 2311: Worksheet \#9

Derivatives of Exponential and Logarithmic Functions

LECTURE: Review of logarithms and exponentials.

1) Without using a calculator, compute the following:
a) $\log _{2}(8)$
b) $\log _{5}\left(\frac{1}{25}\right)$
c) $\log _{1 / 3}(9)$
2) If $\log _{b}(A)=5, \log _{b}(B)=3$, and $\log _{b}(C)=2$, compute

$$
\log _{b}\left(\frac{A^{2}}{B^{4} C^{3}}\right)
$$

3) Solve the equation $\log _{2}\left(x^{2}+1\right)=1$.
4) Solve the equation $5^{3 x}=7$.

LECTURE: the number e as a limit, $e^{x}, \ln (x)$, and $\left(e^{x}\right)^{\prime}$.
5) Find each of the following derivatives. What are you using in each case?
(a) $\frac{d}{d x}\left(e^{7 x}\right)=$
(b) $\frac{d}{d x}\left(e^{x^{3}}\right)=$
(c) $\frac{d}{d x}\left(e^{x^{2}-10 x}\right)=$
(d) $\frac{d}{d x}\left(e^{f(x)}\right)=$
(e) $\frac{d}{d x}\left(e^{\pi}\right)=$
6) Use the trick that $2^{x}=e^{\ln \left(2^{x}\right)}=e^{x(\ln 2)}$, to find a formula for

$$
\frac{d}{d x}\left(2^{x}\right)
$$

In general, if a is a positive constant, $\frac{d}{d x}\left(a^{x}\right)=(\ln a) a^{x}$.
7) Compute the derivative of each of the following functions:
(a) $y=\sin \left(3^{x}\right)$
(b) $y=(\sin x) 3^{x}$
(c) $y=3^{\sin x}$
8) Find the values of x, if any, where $f(x)=x^{2} e^{-3 x}$ has a horizontal tangent line.

LECTURE BREAK: Use $e^{\ln x}=x$ to find $(\ln x)^{\prime}=\frac{1}{x}$. Show also $\left(\log _{a} x\right)^{\prime}=\frac{1}{(\ln a) x}$.
9) Compute the derivative of each of the following functions:
(a) $y=\ln \left(x^{2}\right)$
(b) $y=(\ln x)^{2}$
(c) $y=\log (\log x)$
(d) $y=x^{2} \log _{2} x$
(e) $y=\ln (\sec x)$
(f) $y=\ln (\sec x+\tan x)$
(g) $y=\ln \left(\frac{\sqrt{1-3 x^{2}}}{\cos ^{2} x}\right)$
10) Explain why the y-intercept of any tangent line to the curve $y=\ln x$ must be one unit less than the y-coordinate of the point of tangency. Hint: Write the equation of the tangent line to $y=\ln x$ at an arbitrary point $x_{0}=a$.
11) Many population growth/decay models follow an exponential model. An exponential model is characterized by the property that the rate of change of the population is proportional to its size. Let $P(t)=P_{0} e^{k t}$ be a certain population at time t, where P_{0} and k are constant parameters.
(a) What is the meaning of P_{0} ?
(b) Show that $P(t)=P_{0} e^{k t}$ satisfies $P^{\prime}(t)=k P(t)$, so, indeed, the rate of change of the population is proportional to its size, k being the constant of proportionality. (The constant k is also called the relative growth rate.)
12) A bacteria culture initially contains 100 cells and grows exponentially. After one hour the population has increased to 420 .
(a) Find an expression for the number of bacteria after t hours.
(b) Find the number of bacteria after 3 hours.
(c) Find the rate of growth after 3 hours.
(d) When will the population reach 10,000 ?

Practice: (Don't turn these in.)
§3.2 \# 1-27 odd, 31, 35-41odd, 45*, 47*
§3.3 \# 15-41 odd, 71-74, 77, 79

