NAME: _____

MAC 2311: Worksheet #10

Derivatives of Inverse Trigonometric Functions. Logarithmic Differentiation.

LECTURE: Definition of $\arcsin(x)$, $\arctan(x)$. Derivative of $\arcsin(x)$.

- 1) Without using a calculator, compute:
 - a) $\arcsin(1/2)$ b) $\arctan(1)$ c) $\sin(\arcsin(1/5))$ d) $\arcsin(\sin(\pi/5))$ e) $\arctan(\tan(-3\pi/4))$ f) $\arcsin(\sin(3\pi/4))$
- 2) Compute the following derivatives:
 - a) $\frac{d}{dx}(x^3 \arcsin(3x))$ b) $\frac{d}{dx}\left(\frac{\sqrt{x}}{\arcsin(x)}\right)$

c)
$$\frac{d}{dx}[\ln(\arcsin(e^x))]$$

d)
$$\frac{d}{dx} [\arcsin(\cos x)]$$

The result of part d) might be surprising, but there is a reason for it. If you find it, it will also lead you to a simple proof for the derivative of $\arccos x!$

3) In this problem, you will compute $\frac{d}{dx} \arctan(x)$

a) Using the chain rule, differentiate both sides of the equality $\tan(\arctan(x)) = x$ and solve the resulting equation for $\frac{d}{dx}\arctan(x)$.

b) Let $\theta = \arctan(x)$ so $\tan(\theta) = x$. Draw a right triangle with vertices A, B, and C and angles $\angle ABC = \pi/2$ and $\angle BAC = \theta$. If the length of the side AB is |AB| = 1, find the lengths |BC| and |AC| in terms of x.

- c) Using the triangle you drew in (b), find sec(arctan(x)).
- d) Combine your answers for (c) and (a) to get $\frac{d}{dx} \arctan(x)$.

4) Compute the following derivatives:

a)
$$\frac{d}{dx}[\arctan(e^x)]$$

b) $\frac{d}{dx}[e^x \arctan(x)]$
c) $\frac{d}{dx}[\sin(\arctan(x))]$
d) $\frac{d}{dx}[\arctan(\arcsin(x^2))]$

LECTURE BREAK: Logarithmic differentiation. Show the example $(x^x)'$

5) Use logarithmic differentiation to find the derivative of each of the following functions:

(a)
$$y = x^{\sin x}$$
 (b) $y = \frac{x^2 \sqrt[3]{5+x^2}}{(x+2)^5}$

6) (a) We proved the power rule $(x^n)' = nx^{n-1}$ for the case when n was a positive integer and in some other special cases. Now use logarithmic differentiation to show that the power rule $(x^r)' = rx^{r-1}$ holds for any real constant r.

- (b) Use logarithmic differentiation to prove the product rule.
- (c) Use logarithmic differentiation to prove the quotient rule.

LECTURE BREAK: Implicit differentiation; Show one or two examples.

- 7) For each of the following implicitly defined functions, find $\frac{dy}{dx}$: a) $u^4 - 3u^3 - x = 3$
- b) $\cos(xy) = x y$
- 8) Consider the function implicitly defined by $y^4 = x + y$.
 - a) Find an expression for the derivative $\frac{dy}{dr}$.
 - b) Find the equation of the line tangent to this function at the point (0,1).
 - c) Find where the tangent line is vertical.
- **Practice:** (Don't turn these in.) 3.3 # 43-53 odd, 65 Inverse trig differentiation problems. 3.1 # 1-13 odd, 19, 25, 27, 29^{*}, 33^* – Implicit diff problems. Logarithmic Differentiation problems were recorded on the previous worksheet (in 3.2).