NAME: \qquad
MAC 2311: Worksheet \#10
10/08/2015
Derivatives of Inverse Trigonometric Functions. Logarithmic Differentiation.
LECTURE: Definition of $\arcsin (x), \arctan (x)$. Derivative of $\arcsin (x)$.

1) Without using a calculator, compute:
a) $\arcsin (1 / 2)$
b) $\arctan (1)$
c) $\sin (\arcsin (1 / 5))$
d) $\arcsin (\sin (\pi / 5))$
e) $\arctan (\tan (-3 \pi / 4))$
f) $\arcsin (\sin (3 \pi / 4))$
2) Compute the following derivatives:
a) $\frac{d}{d x}\left(x^{3} \arcsin (3 x)\right)$
b) $\frac{d}{d x}\left(\frac{\sqrt{x}}{\arcsin (x)}\right)$
c) $\frac{d}{d x}\left[\ln \left(\arcsin \left(e^{x}\right)\right)\right]$
d) $\frac{d}{d x}[\arcsin (\cos x)]$

The result of part d) might be surprising, but there is a reason for it. If you find it, it will also lead you to a simple proof for the derivative of $\arccos x$!
3) In this problem, you will compute $\frac{d}{d x} \arctan (x)$
a) Using the chain rule, differentiate both sides of the equality $\tan (\arctan (x))=x$ and solve the resulting equation for $\frac{d}{d x} \arctan (x)$.
b) Let $\theta=\arctan (x)$ so $\tan (\theta)=x$. Draw a right triangle with vertices A, B, and C and angles $\angle A B C=\pi / 2$ and $\angle B A C=\theta$. If the length of the side $A B$ is $|A B|=1$, find the lengths $|B C|$ and $|A C|$ in terms of x.
c) Using the triangle you drew in (b), find $\sec (\arctan (x))$.
d) Combine your answers for (c) and (a) to get $\frac{d}{d x} \arctan (x)$.
4) Compute the following derivatives:
a) $\frac{d}{d x}\left[\arctan \left(e^{x}\right)\right]$
b) $\frac{d}{d x}\left[e^{x} \arctan (x)\right]$
c) $\frac{d}{d x}[\sin (\arctan (x))]$
d) $\frac{d}{d x}\left[\arctan \left(\arcsin \left(x^{2}\right)\right)\right]$

LECTURE BREAK: Logarithmic differentiation. Show the example $\left(x^{x}\right)^{\prime}$
5) Use logarithmic differentiation to find the derivative of each of the following functions:
(a) $y=x^{\sin x}$
(b) $y=\frac{x^{2} \sqrt[3]{5+x^{2}}}{(x+2)^{5}}$
6) (a) We proved the power rule $\left(x^{n}\right)^{\prime}=n x^{n-1}$ for the case when n was a positive integer and in some other special cases. Now use logarithmic differentiation to show that the power rule $\left(x^{r}\right)^{\prime}=r x^{r-1}$ holds for any real constant r.
(b) Use logarithmic differentiation to prove the product rule.
(c) Use logarithmic differentiation to prove the quotient rule.

LECTURE BREAK: Implicit differentiation; Show one or two examples.
7) For each of the following implicitly defined functions, find $\frac{d y}{d x}$:
a) $y^{4}-3 y^{3}-x=3$
b) $\cos (x y)=x-y$
8) Consider the function implicitly defined by $y^{4}=x+y$.
a) Find an expression for the derivative $\frac{d y}{d x}$.
b) Find the equation of the line tangent to this function at the point $(0,1)$.
c) Find where the tangent line is vertical.

Practice: (Don't turn these in.) 3.3 \# 43-53 odd, 65 - Inverse trig differentiation problems.
3.1 \# 1-13odd, 19, 25, 27, 29*, 33* - Implicit diff problems.

Logarithmic Differentiation problems were recorded on the previous worksheet (in 3.2).

