Mean Value Theorem Worksheet:

1) Consider the function $f(x)=x(x-2)^{2}$ on the interval $[0,2]$.
a) Compute $f(0)$ and $f(2)$.
b) Does Rolle's theorem apply to $f(x)$ on the interval $[0,2]$?
c) Find the point(s) $c \in(0,2)$ whose existence is guaranteed by Rolle's theorem.
2) Consider the function $f(x)=x-\frac{1}{x}$ on the interval [1,3]. Find the point(s) in $(1,3)$ that are guaranteed to exist by the Mean Value Theorem. Sketch a picture of the graph of $f(x)$ on $[1,3]$ including at least one such point and illustrating the Mean Value Theorem.
3) Consider the function $f(x)=|4 x-8|$ on the interval $[1,3]$.
a) Compute $f(1)$ and $f(3)$.
b) Is there $c \in(1,3)$ such that $f^{\prime}(c)=0$?
c) Why does Rolle's Theorem not apply to $f(x)$ on $[1,3]$?
d) Does the Mean Value theorem apply to $f(x)$ on the interval $[3,5]$? If so find the point(s) $c \in[3,5]$ whose existence is guaranteed by the MVT.
4) Suppose that a state police force has deployed an automated radar tracking system on a highway that has a speed limit of 65 mph . A driver passes through one radar detector at 1 pm and is traveling 60 mph at that moment. Then, the driver passes through a second radar detector 60 miles away at $1: 45 \mathrm{pm}$, again traveling 60 mph at that moment. However, a speeding ticket is being issued for this driver. Argue with Calculus that the speeding ticket is justified.
5) It is intuitively obvious that if $f^{\prime}(x)>0$ for all $x \in(a, b)$ then $f(x)$ is increasing. However, the more one thinks about it, this assertion becomes more troubling. The value of $f^{\prime}(x)$ only controls the slope of the tangent line at the point x : why should it say anything about values of $f\left(x^{\prime}\right)$ when x^{\prime} is near x ? In these problems, we discuss how the Mean Value Theorem gives a rigorous proof of this assertion.

To give such a proof, we need a precise definition of the word increasing when it describes a function on an interval. Here is such a definition. We say that a function $f(x)$ is increasing on (a, b) if for all $x_{1}, x_{2} \in(a, b)$ with $x_{1}<x_{2}, f\left(x_{1}\right)<f\left(x_{2}\right)$.
a) If $x_{1}<x_{2}$ what can you say about the sign of $x_{2}-x_{1}$?
b) If $x_{1}<x_{2}$ and

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}>0,
$$

what can you say about the sign of $f\left(x_{2}\right)-f\left(x_{1}\right)$?
c) In (a) and (b), we have shown that if

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}>0
$$

then $x_{1}<x_{2}$ implies $f\left(x_{1}\right)<f\left(x_{2}\right)$. Explain how the Mean Value Theorem tells us that if $f^{\prime}(x)>0$ for all $x \in(a, b)$ then $f(x)$ is increasing on (a, b).

