Panther ID:

NAME:

MAC 2311: Worksheet Sep. 22, 2016

1) Compute the derivative of the given function from the limit definition:
a) $f(x)=\frac{1}{x}$
b) $f(x)=\sqrt{x}$
2) Compute the derivatives of the following functions (you don't need to use the limit definition):
a) $f(x)=4 \sqrt{x}-7 x^{2}+13$
b) $f(x)=13 x^{5}-\frac{7}{x}+12 x$
3) For the given $f(x)$, compute the indicated higher derivative
a) For $f(x)=x^{5}-7 x+2$, compute $f^{(4)}(x)$
b) For $f(x)=x^{15}$, compute $\frac{d^{3} f}{d x^{3}}$
c) For $f(x)=x^{n}$, where n is a positive integer, what is the k-th derivative $f^{(k)}(x)$ if $k>n$? What is $f^{(n)}(x)$?
4) Compute the following derivatives. Do not simplify your answer.
a) $\frac{d}{d x}\left(\left(x^{2}-3 x+2\right)\left(x^{3}-4 x^{2}+5\right)\right)$
b) $\frac{d}{d x}\left((\sqrt{x}-7)\left(\frac{5}{x}-7 x+10\right)\right)$
5) Compute the following derivatives. Do not simplify your answer.
c) $\frac{d}{d x}\left(\frac{x^{7}-3 x+1}{5 x+2}\right)$
d) $\frac{d}{d x}\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)$
6) Prove that the power law, $(d / d x)\left(x^{n}\right)=n x^{n-1}$ holds when n is a negative integer by combining the quotient law and the power law for positive integers.
