MAC 2311: Worksheet #11

October 11th, 2016

Panther ID: _____

NAME:

1) Compute the following derivatives:

a) $\frac{d}{dx} \ln(x^2 + 1)$

b) $\frac{d}{dx}\ln(\sin(x))$

2) Use implicit differentiation to find the slope of the line tangent to the curve $\ln(y) = x^2 + x + 1$ at the point (1, e).

3) In this problem, we compute the derivative of $\log_b(x)$ for any number b > 0.

a) Show that the base change formula, $\log_b(x) = \ln(x)/\ln(b)$, holds by setting $y = \log_b(x)$, and simplifying $\ln(b^y)$ two different ways. (Hint: first simplify b^y , then apply a law of of logarithms to $\ln(b^y)$.)

b) Differentiate both sides of the base change formula and to find the derivative of $\log_b(x)$.

4) Use logarithmic differentiation to find the derivative of

 $f(x) = \frac{(2x+3)^5(3x-4)^4}{\sin^5(x)\cos^4(x)}.$

5) Compute the following derivatives:

a)
$$\frac{d}{dx}e^{\tan(x)}$$

b) $\frac{d}{dt}\sin(t)e^{t^2}$

 $\mathbf{2}$

6) We have shown that the power law, $\frac{d}{dx}x^r = rx^{r-1}$, holds whenever r is a *rational* number, that is r = p/q where $p, q = \pm 1, \pm 2, \ldots$. To define $f(x) = x^r$ when r is not rational, we use the equality $x^r = e^{\ln(x^r)} = e^{r\ln(x)}$.

Use this definition to show that the power rule holds for all real numbers r.