1. In each case, find the most general form of f satisfying the given condition.

$$
f^{\prime}(x)=x(3 x+4)
$$

2. Solve the following initial value problems:

$$
\frac{d y}{d x}=6 e^{x}, \quad y(0)=2
$$

3. A particle is moving on a straight line with the given data. Find the position $s(t)$ of the particle at time t.
(i) $v(t)=-32 t+100, \quad s(0)=20$,
(ii) $a(t)=2 \cos t+\sin t, \quad v(0)=1, \quad s(0)=0$.
4. A stone is dropped from the top of a tower 800 ft above the ground.
(a) Find the height $s(t)$ of the stone above the ground at t seconds since it was dropped. Assume the initial velocity is 0 and assume constant acceleration during the motion $a=-32 f t / s^{2}$ (the gravitational acceleration, often denoted g).
(b) How long does it take the stone to reach the ground?
(c) With what velocity does it strike the ground?
5. A car braked with constant deceleration of $16 \mathrm{ft} / \mathrm{s}^{2}$, producing skid marks measuring 200 ft before coming to a stop. How fast was the car traveling when the brakes were applied?
