- 1. Consider the function $f(x) = \frac{3-x}{x^2-9}$.
- (a) Determine the points of discontinuity for f(x).
- (b) Use limits to understand the behavior of the function near the points of discontinuity. Are any of these removable discontinuities?
- (c) Does this function have vertical asymptotes? Briefly justify your answer.
- (d) Does this function have horizontal asymptotes? Justify your answer with limits.
- (c) Graph this function.

2. (a) Find, if possible, a value for the constant $k \ge 0$ which will make the function g(x) continuous at x = 0.

$$g(x) = \begin{cases} \frac{1-\cos(kx)}{x^2} & \text{if } x < 0\\ 1+\sin(3x) & \text{if } x \ge 0 \end{cases},$$

(b) If there was a constant k satisfying part (a), for this value of k is the function g(x) continuous everywhere? Briefly justify.

- **3.** (a) Use IVT to show that the equation $x^3 = 3x 1$ has a solution in the interval [0, 1].
- (b) Approximate the solution in part (a) with an accuracy of 0.25; that is find an interval of length 1/4 which contains the solution.
- (c) Use again IVT to show that the equation $x^3 = 3x 1$ has three real solutions and find intervals of length 1 containing each solution.

4. (a) Use the ϵ - δ definition of limit to prove that $\lim_{x\to 5}(2x+3)=13$.

Challenge: (b) Use the ϵ - δ definition of limit to prove that $\lim_{x\to 5} \frac{1}{2x+3} = \frac{1}{13}$.

- 5. True or False questions. Answer and briefly justify your answer in each case.
- (i) If f(x) is a continuous function and $\lim_{x\to 3} f(x) = 4$ then f(3) = 4 True False
- (ii) $\lim_{x\to\infty}\cos\left(\frac{\pi x^2}{2x^2+1}\right)=0$ True False
- (iii) The function $f(x) = \sec x$ is defined and is continuous for all real numbers x. True False
- (iv) If $\lim_{x\to a} f(x) = 0$ and $\lim_{x\to a} g(x) = 0$ then $\lim_{x\to a} \frac{f(x)}{g(x)} = 0$ True False
- (v) If $|f(x) + 7| \le 3|x + 2|$ for all real x, then $\lim_{x \to -2} f(x) = -7$ True False
- (vi) If f(x) is continuous at x = 2 and f(2) = 5, then for x sufficiently close to 2, f(x) > 4.95. True False