Worksheet 07/07 Calculus I Summer B 2017 Group nr:

1. Show that the function $y=\sin \left(x^{2}\right)$ satisfies the differential equation $y^{\prime \prime}-\frac{y^{\prime}}{x}+a x^{2} y=0$, for a certain constant a that you should determine.
2. For each of the following implicitly defined functions, find $\frac{d y}{d x}$:
(a) $y^{4}-3 y^{3}-x=3$
(b) $\cos (x y)=x-y$
3. Consider the function implicitly defined by $y^{4}=x+y$.
a) Find an expression for the derivative $\frac{d y}{d x}$.
b) Find the equation of the line tangent to this function at the point $(0,1)$.
c) Find where the tangent line is vertical.
4. Find, with proof, the formulae for $(\arctan (x))^{\prime}$ and $(\operatorname{arccot}(\mathrm{x}))^{\prime}$.
5. Compute the derivative of each of the following functions:
a) $y=\arctan (\sin (x))$
b) $y=\cos (x) \tan ^{-1}(2 x)$
c) $y=\sin ^{-1}(\cos (3 x))$
d) $y=\frac{x^{3}+7}{\arctan \left(x^{2}\right)}$
6. Show that the function $f(x)=2 x^{3}+6 x-5$ is one to one and then find $\left(f^{-1}(3)\right)^{\prime}$. Note that $f(1)=3$.
7. A ten-foot long, straight plank is leaning against a vertical wall when it begins to slip. Suppose the base of the plank is moving away from the wall at 2 ft ./s.. How fast is the top of the plank moving down the wall when the top is 6 ft above the ground?
