\qquad

1) In each case, find the general antiderivative:
(a) $\int 3 x^{4}-4 \sqrt{x}+\frac{7}{x^{2}} d x$,
(b) $\int \frac{1}{\sqrt{1-x^{2}}} d x$
(c) $\int \frac{1}{2 x^{3}}+\csc x \cot x d x$
(d) $\int\left(\sec ^{2} x+\frac{3}{\sqrt{x}}-\pi\right) d x$
(e) $\int \frac{x^{2}-3}{2 x} d x$
(f) $\int \frac{x^{2}}{x^{2}+1} d x$
2) In each case, find the most general form of f satisfying the given condition.
(a) $f^{\prime}(x)=x(3 x+4)$
(b) $f^{\prime \prime}(x)=\sqrt[3]{x}+1$
3) Solve the following initial value problems:
(a) $\frac{d y}{d x}=6 e^{x}, \quad y(0)=2$
(b) $\frac{d y}{d x}=\sqrt{x}(6+5 x), \quad y(1)=0$
4) A particle is moving on a straight line with the given data. Find the position $s(t)$ of the particle at time t.
(a) $v(t)=-32 t+100, \quad s(0)=20$,
(b) $a(t)=2 \cos t+\sin t, \quad v(0)=1, \quad s(0)=0$.
5) A stone is dropped from the top of a tower 800 ft above the ground.
(a) Find the height $s(t)$ of the stone above the ground at t seconds since it was dropped. Assume the initial velocity is 0 and assume constant acceleration during the motion $a=-32 \mathrm{ft} / \mathrm{s}^{2}$ (the gravitational acceleration, often denoted g).
(b) How long does it take the stone to reach the ground?
(c) With what velocity does it strike the ground?
6) A car braked with constant deceleration of $16 \mathrm{ft} / \mathrm{s}^{2}$, producing skid marks measuring 200 ft before coming to a stop. How fast was the car traveling when the brakes were applied?
7) Compute the following integrals using integration by substitution and the given substitution:
(a) $\int \frac{2 x+1}{x^{2}+x} d x$ using $u=x^{2}+x$
(b) $\int \frac{1}{x(\ln x)^{2}} d x$ using $u=\ln x$
(c) $\int \sin ^{4}(3 x) \cos (3 x) d x$ using $w=\sin (3 x)$
8) Compute the following integrals using integration by substitution:
(a) $\int e^{5 x} d x$
(b) $\int \cos ^{5} x \sin x d x$
(c) $\int \sqrt{3 x+7} d x$
(d) $\int\left(x^{2}+4 x+7\right)^{9}(x+2) d x$
(e) $\int x \sec \left(x^{2}\right) \tan \left(x^{2}\right) d x$
9) Compute the following integrals using integration by substitution.
(a) $\int \frac{e^{2 x}}{1+e^{2 x}} d x$
(b) $\int \frac{e^{x}}{1+e^{2 x}} d x$
(c) $\int \frac{1}{x^{2}+a^{2}} d x$ where a is a constant.
(d) $\int \frac{t}{\sqrt{1-t^{4}}} d t$
(e) $\int \frac{\sin \theta}{1+\cos ^{2} \theta} d \theta$
(f) $\int \tan (x) d x$
(g) $\int x \sqrt{2 x+1} d x$
(h) $\int \frac{\cos (1 / x)}{3 x^{2}} d x$
