PID: \qquad

Summer 2019 -- MAC 2311- Exam 1

There are 8 problems for a total of 109 points. Show your work; an answer alone, even correct, may get no credit. An illegible solution will not be graded. Calculators are not allowed.

Problem 1. ($\mathbf{1 7} \mathbf{~ p t s}$) The graph of a function f is given below. Use the graph to answer the questions that follow.

(i) (7 pts) Find the following limits (you don't have to show any work here)

$$
\begin{array}{cc}
\lim _{x \rightarrow-3^{-}} f(x)= & \lim _{x \rightarrow-3^{+}} f(x)= \\
\lim _{x \rightarrow 2} f(x)= & \lim _{x \rightarrow 0} f(x)= \\
\lim _{x \rightarrow-\infty} f(x)= & \lim _{x \rightarrow+\infty} f(x)=
\end{array}
$$

(ii) (2 pts) Specify the domain of the function f.
(iii) (3 pts) Is f continuous everywhere? If not, give x value(s) at which f has a discontinuity. Specify if any of the discontinuities is removable.
(iv) (2 pts) Identify any point(s) x, where the function is not differentiable. Specify if there is no such point x.
(v) (3pts) On the same coordinate system, sketch the graph of $f^{\prime}(x)$.

Problem 2. (30 pts) Find the following limits. If a limit is infinite or does not exist, specify so. (5 pts each).
a) $\lim _{x \rightarrow-3^{+}} \frac{x}{3+x}$
b) $\lim _{x \rightarrow 3} \frac{x^{2}-x+6}{9 x-x^{3}}$
c) $\lim _{x \rightarrow+\infty} \frac{x^{2}-x+6}{9 x-x^{3}}$
d) $\lim _{x \rightarrow+\infty} \cos (x)=$ $x \rightarrow+\infty$
e) $\lim _{x \rightarrow 0} \frac{\tan 2 x}{\sin 5 x}$
f) $\lim _{x \rightarrow+\infty} \sqrt{x^{2}+3 x}-x$

Problem 3. ($\mathbf{9} \mathbf{~ p t s) ~ T h e s e ~ a r e ~ t r u e ~ o r ~ f a l s e ~ q u e s t i o n s . ~ A n s w e r ~ (1 p t) ~ a n d ~ g i v e ~ b r i e f ~ j u s t i f i c a t i o n ~ (2 p t s) . ~ G r a p h ~ c a n ~}$ serve as a justification.
(a) The graph of a function can never cross its horizontal asymptote.
True
False Justification:
(b) If a function f is continuous at $x=0$, then f is differentiable at $x=0$.

True False Justification:
(c) The equation $x^{3}=3 x^{2}+1$ has a solution in the interval $[3,4]$.

True False Justification:

Problem 4. (8 pts) Use the limit definition of the derivative to compute $f^{\prime}(x)$ for $f(x)=\sqrt{x}$.

Problem 5. (15 pts) Compute $f^{\prime}(x)$ for the following. You don't need to use limits here. (5 points each)
a) $f(x)=x^{3} e^{x}$
b) $f(x)=\frac{x^{2}-4}{3 x+1}$
c) $f(x)=\pi^{2}+3 \sqrt{x}-\frac{5}{x}$

Problem 6. (12 pts) (a) (2pts) Write the limit definition of continuity for a function $f(x)$ at $x=a$.
(b) (5pts) Use this definition to determine whether or not the following function is continuous at $x=0$.

$$
f(x)= \begin{cases}\frac{x^{2}+5}{2 x^{2}+1} & \text {, if } x \leq 0 \\ \frac{\sin (3 x)}{x} & \text {, if } x>0\end{cases}
$$

(c)(5pts) List all asymptotes, vertical or horizontal (if any), of the function $f(x)$ from part (b). Justify your answer with limits.

Problem 7. (8 pts) A particle is moving on the x-axis. Its position (in cm) at time t (in seconds) is given by $x(t)=t^{3}+t-9$. Answer the following (2 pts each)
a) Find the instantaneous velocity at time $t=2 \mathrm{~s}$.
b) Find the acceleration at $t=2 \mathrm{~s}$.
c) Find the average velocity over the time interval $[0,1]$.
d) Find the time interval when the particle is moving to the left.

Problem 8. (10 pts) Choose ONE:
(A) State and prove the formula for the derivative of a product (the product rule).
(B) Prove the power rule for the case of a positive integer power.

