Worksheet HI Solutions
1.

$$
\text { average velocity }=\text { average rate of change }=\frac{s(\beta)-s(\alpha)}{\beta-\alpha}
$$

2. average velocity for $[1,2]$:

$$
\begin{aligned}
& \text { average velocity for }[1,2] \text { : } \\
& =\frac{f(2)-f(1)}{2-1}=\frac{\left.-(2)^{2}+5(2)+10\right]-\left[-(1)^{2}+5(1)+10\right]}{1}=\frac{16-14}{1}=2 \frac{\text { units }}{\mathrm{sec}}
\end{aligned}
$$

average velocity for $[1,1.5]$;

$$
\begin{aligned}
& \text { average velocity for }[1,1.5]: \\
& =\frac{f(1.5)-(1)}{1.5-1}=\frac{\left[-(1.5)^{2} 25(1.5)+10\right]-14}{0.5}=\frac{15.25-14}{0.5}=2.5 \frac{\text { units }}{\sec } \\
& \text { average velocity for }[1,111]:
\end{aligned}
$$

average velocity for $[1,1,1]$:

$$
\begin{aligned}
& \text { average velocity for }[1,1.1]: \\
& =\frac{f(1.1)-f(1)}{1.1-1}=\frac{(-1.1)+5(1)]+10]-14}{0.1}=\frac{14.29 .-14}{0.1}=2.9 \frac{\text { units }}{\mathrm{sec}}
\end{aligned}
$$

slope of the tangent line (inst contanaus velocity) at $t=1$,

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{f(1+h)-f(1)^{2}}{h}=\lim _{h \rightarrow 0} \frac{\left.\left[-(1, h)^{2}+5(1+h)+1\right]-\left(-()^{2}+S(1)+10\right]\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{-\left(1+2 h+h^{2}\right) \cdot 8+5 h+10+1 \cdot 5+10}{h}=\lim _{h \rightarrow 0} \frac{-x-2 h-h^{2}+5 h+1}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 h-h^{2}}{h}=\lim _{h \rightarrow 0} \frac{h(3-h)}{h}=\lim _{h \rightarrow 0} 3-h=3-0=3 \frac{\text { units }}{\text { sec }}
\end{aligned}
$$

Note: As we calculated the average velocities in smallor intervals, it got closer to our slope of the tangent line.

