NAME: ____

MAC 2311: Worksheet #13

1) For each of the following implicitly defined functions, find $\frac{dy}{dx}$: a) $y^4 - 3y^3 - x = 3$ at (x, y) = (-5, 1).

b) $\cos(xy) = x - y$

2) Consider the function implicitly defined by $y^4 = x + y$. a) Find an expression for the derivative $\frac{dy}{dx}$.

b) Find the equation of the line tangent to this function at the point (0,1).

c) Find where the tangent line is vertical.

3) Without using a calculator, compute the following:

- a) $\log_2(8)$
- b) $\log_5(\frac{1}{25})$ c) $\log_{1/3}(9)$

4) If $\log_b(A) = 5$, $\log_b(B) = 3$, and $\log_b(C) = 2$, compute

$$\log_b \left(\frac{A^2}{B^4 C^3}\right).$$

- 5) Solve the equation $\log_2(x^2 + 1) = 1$.
- 6) Solve the equation $5^{3x} = 7$.
- 7) Find each of the following derivatives. What are you using in each case?

(a)
$$\frac{d}{dx}(e^{7x}) =$$

(b) $\frac{d}{dx}(e^{f(x)}) =$

(c) $\frac{d}{dx}(e^{\pi}) =$

8) Use the trick that $2^x = e^{\ln(2^x)} = e^{x(\ln 2)}$, to find a formula for

$$\frac{d}{dx}(2^x)$$