NAME: \qquad

MAC 2311: Worksheet \#13

1) For each of the following implicitly defined functions, find $\frac{d y}{d x}$:
a) $y^{4}-3 y^{3}-x=3$ at $(x, y)=(-5,1)$.
b) $\cos (x y)=x-y$
2) Consider the function implicitly defined by $y^{4}=x+y$.
a) Find an expression for the derivative $\frac{d y}{d x}$.
b) Find the equation of the line tangent to this function at the point $(0,1)$.
c) Find where the tangent line is vertical.
3) Without using a calculator, compute the following:
a) $\log _{2}(8)$
b) $\log _{5}\left(\frac{1}{25}\right)$
c) $\log _{1 / 3}(9)$
4) If $\log _{b}(A)=5, \log _{b}(B)=3$, and $\log _{b}(C)=2$, compute

$$
\log _{b}\left(\frac{A^{2}}{B^{4} C^{3}}\right)
$$

5) Solve the equation $\log _{2}\left(x^{2}+1\right)=1$.
6) Solve the equation $5^{3 x}=7$.
7) Find each of the following derivatives. What are you using in each case?
(a) $\frac{d}{d x}\left(e^{7 x}\right)=$
(b) $\frac{d}{d x}\left(e^{f(x)}\right)=$
(c) $\frac{d}{d x}\left(e^{\pi}\right)=$
8) Use the trick that $2^{x}=e^{\ln \left(2^{x}\right)}=e^{x(\ln 2)}$, to find a formula for

$$
\frac{d}{d x}\left(2^{x}\right)
$$

