Worksheet 03/19 MAC 2281- Spring 2019

Group nr: ____

Names:

1) In each case, find the general antiderivative:

- (a) $\int 3x^4 4\sqrt{x} + \frac{7}{r^2} dx$, (b) $\int \frac{1}{\sqrt{1-x^2}} dx$ (c) $\int \frac{1}{2x^3} + \csc x \cot x \, dx$
- (d) $\int (\sec^2 x + \frac{3}{\sqrt{x}} \pi) \, dx$
- (e) $\int \frac{x^2 3}{2x} dx$

- (f) $\int \frac{x^2}{x^2+1} dx$

2) In each case, find the most general form of f satisfying the given condition.

- (a) f'(x) = x(3x+4)
- (b) $f''(x) = \sqrt[3]{x} + 1$

3) Solve the following initial value problems:

- (a) $\frac{dy}{dx} = 6e^x$, y(0) = 2
- (b) $\frac{dy}{dx} = \sqrt{x}(6+5x), \ y(1) = 0$
- 4) A particle is moving on a straight line with the given data. Find the position s(t) of the particle at time t.
 - (a) v(t) = -32t + 100, s(0) = 20,
 - (b) $a(t) = 2\cos t + \sin t$, v(0) = 1, s(0) = 0.

5) A stone is dropped from the top of a tower 800 ft above the ground.

- (a) Find the height s(t) of the stone above the ground at t seconds since it was dropped. Assume the initial velocity is 0 and assume constant acceleration during the motion $g = -32ft/s^2$ (this is the gravitational acceleration at the surface of the Earth).
- (b) How long does it take the stone to reach the ground?
- (c) With what velocity does it strike the ground?

6) A car braked with constant deceleration of 16ft/s^2 , producing skid marks measuring 200ft before coming to a stop. How fast was the car traveling when the brakes were applied?

- 7) Compute the following integrals using integration by substitution and the given substitution:
 - (a) $\int \frac{2x+1}{x^2+x} \, dx$ using $u = x^2 + x$
 - (b) $\int \frac{1}{x(\ln x)^2} dx$ using $u = \ln x$
 - (c) $\int \sin^4(3x) \cos(3x) dx$ using $w = \sin(3x)$

8) Compute the following integrals using integration by substitution:

- (a) $\int e^{5x} dx$
- (b) $\int \cos^6 x \sin x \, dx$
- (c) $\int \sqrt{3x+7} \, dx$
- (d) $\int (x^2 + 4x + 7)^9 (x+2) dx$
- (e) $\int x^2 \sec(x^3) \tan(x^3) dx$
- 9) Compute the following integrals using integration by substitution.
- (a) $\int \frac{e^{2x}}{1+e^{2x}} dx$ (b) $\int \frac{e^x}{1+e^{2x}} dx$ (c) $\int \frac{\cos(4\sqrt{t}+5)}{\sqrt{t}} dt$
- (d) $\int \frac{t}{\sqrt{1-t^4}} dt$
- (e) $\int \frac{\sin\theta}{1+\cos^2\theta} d\theta$

(f)
$$\int \frac{1}{x \ln x} dx$$

- (g) $\int x\sqrt{2x+1} \, dx$
- (h) $\int \frac{\cos(1/x)}{3x^2} dx$