\qquad

1. A student writes

$$
\text { By L'Hôpital's Rule, } \quad \lim _{x \rightarrow-2} \frac{x-2}{x^{2}-2}=\lim _{x \rightarrow-2} \frac{1}{2 x}=-\frac{1}{4}
$$

Are the reasoning and the answer correct? Why? What is the correct answer?
2. Compute the following limits
a) $\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{\sin (3 x)}$
b) $\lim _{x \rightarrow+\infty}\left(x-\ln \left(1+2 e^{x}\right)\right)$
b) $\lim _{x \rightarrow+\infty} x^{1 / x}$
3. Which function grows faster as $x \rightarrow+\infty$?. List in increasing order. You may use technology here, but justify your answer: $e^{x^{2}}, x^{2}, \sqrt{x^{4}+1}, \sqrt{x}, 1 / x, 7, e^{x}, \ln (x), x^{x}, x \ln (x), x e^{x}$.
4. The vibrations of a vibrating spring subject to strong friction can sometimes be modelled by $x(t)=t e^{-t}, t \geq 0$.
a) Find any vertical or horizontal asymptotes. (Hint: you will need to use l'Hopital here).
b) Find intervals of increase, decrease.
c) Find intervals of concavity.
d) Sketch graph based on a,b, c, and the fact that $x(0)=0$.

