NAME:

1. True or False. Answer and briefly justify in each case.

(a) If $\{a_k\}_k$ is a convergent sequence then the series $\sum_{k=1}^{\infty} a_k$ also converges.

(b) If the series $\sum_{k=1}^{\infty} a_k$ converges, then the sequence $\{a_k\}_k$ is convergent.

(c) If $S_n = \sum_{k=1}^n a_k$ and $\lim_{n \to \infty} S_n$ does not exist or is not finite, then $\sum_{k=1}^\infty a_k$ is a divergent series.

(d) If $\{a_k\}_k$ is a sequence convergent to 0 then the series $\sum_{k=1}^{\infty} a_k$ converges.

(e) If
$$\sum_{k=1}^{\infty} a_k$$
 converges to A and $\sum_{k=1}^{\infty} b_k$ converges to B , then $\sum_{k=1}^{\infty} (a_k - b_k)$ converges to $A - B$.

(f) If
$$\sum_{k=1}^{\infty} a_k$$
 converges, then $\sum_{k=1}^{\infty} (a_k)^2$ also converges.

- **2.** (a) Use the ratio test to investigate if the series $\sum_{n=1}^{\infty} \frac{n^n}{(2n)!}$ converges or diverges.
- (b) What can you say about $\lim_{n \to \infty} \frac{n^n}{(2n)!}$?

3. Decide if each of the following series is absolutely convergent, conditionally convergent or divergent.

(a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n}}$$
 (b) $\sum_{n=2}^{\infty} (-1)^n \frac{n}{\ln n}$ (c) $\sum_{n=1}^{\infty} \frac{(-2)^n}{n!}$