Name: \qquad Panther ID: \qquad
Worksheet $5 \quad$ Calculus II Fall 2013

1. (The Skydiver reloaded! - again adapted from Briggs) A skydiver in free fall subject to gravitational acceleration and air resistance has a velocity given by

$$
v(t)=v_{T}\left(\frac{e^{a t}-1}{e^{a t}+1}\right),
$$

where v_{T} is the terminal velocity and a is a physical constant. Find the distance the skydiver falls in the first t_{0} seconds.

Hint: $e^{a t}-1=2 e^{a t}-\left(e^{a t}+1\right)$
2. The region bounded between the graph of $\sin x$ and the x-axis when $x \in[0, \pi]$ is rotated around the y-axis; the solid formed has volume V_{1}. Then the same region is rotated around the x-axis; the solid formed has volume V_{2}. Find V_{1} and V_{2} and observe that $V_{1}=4 V_{2}$.
3. (a) Derive a reduction formula for

$$
\int \sin ^{n} x d x
$$

where n is a positive integer. You may check formula (9) in 7.2 to confirm your result.
(b) Use part (a) to derive a recursion formula for

$$
A_{n}=\int_{0}^{\pi / 2} \sin ^{n} x d x
$$

(c) Find A_{1} (directly), A_{3}, A_{5} (using the recursion formula), and then try to find a general formula for A_{n} when n is odd.
(d) Find A_{0} (directly), A_{2}, A_{4} (using the recursion formula), and then try to find a general formula for A_{n} when n is even.

The general formulas for A_{n} are the so-called Wallis sine formulas.

