NAME: \qquad

Worksheet 6 - MAC 2312, Fall 2013

1. Compute
(a) $\int \frac{x^{3}+2 x^{2}+1}{x^{4}+x^{2}} d x$
(b) $\int_{0}^{1} \frac{x^{3}-4 x-10}{x^{2}-x-6} d x$
2. If a thin rod of length L (measured in cm) has constant density δ (measured in g / cm), then the mass of the rod (in g) is computed by $m=\delta \cdot L$. Next you are asked to derive a formula for the mass of a rod with variable density. Suppose that the rod is placed on the x-axis between the points $x=a$ and $x=b$, and suppose the variable density at the point x in the rod is given by $\delta(x)$, for $x \in[a, b]$. Derive the formula for the total mass by dividing the rod in small pieces, etc.
3. A charged rod of length L is placed along the x-axis with the left side at the origin. It can be shown that the electric field produced by the rod at a point in the plane $P(a, b)$ has horizontal, respectively, vertical components given by

$$
E_{x}(P)=\int_{L-a}^{-a} \frac{\lambda x}{4 \pi \epsilon_{0}\left(x^{2}+b^{2}\right)^{3 / 2}} d x \quad E_{y}(P)=\int_{L-a}^{-a} \frac{\lambda b}{4 \pi \epsilon_{0}\left(x^{2}+b^{2}\right)^{3 / 2}} d x
$$

where λ is the charge density per unit length on the rod and ϵ_{0} is the free space permittivity. (A picture will be shown on the board.) Evaluate the two integrals to determine simple formulas for the components of the electric field $E_{x}(P), E_{y}(P)$.
Hint: For one integral you need a trig substitution. The other can be done faster. Note also that λ and ϵ_{0} are constants.

