Name: \qquad Panther ID: \qquad

Exam 2

Calculus II
Fall 2012

To receive credit you MUST SHOW ALL YOUR WORK.

1. $(16 \mathrm{pts})$ Circle the correct answer (4 pts each):
(a) For the integral $\int \sqrt{9 x^{2}+4} d x$, the following substitution is helpful:
(i) $x=\tan \theta$
(ii) $3 x=2 \sin \theta$
(iii) $x=3 \sec \theta$
(iv) $3 x=2 \tan \theta$
(v) $w=9 x^{2}+4$
(Don't spend time evaluating the integral. It is not required.)
(b) The partial fraction decomposition for $\frac{x+3}{(x+2)^{2}\left(x^{2}+4\right)}$ is of the form:
(i) $\frac{A}{x+2}+\frac{B}{x^{2}+4}$
(ii) $\frac{A}{x+2}+\frac{B}{(x+2)^{2}}+\frac{C x+D}{x^{2}+4}$
(iii) $\frac{x+3}{(x+2)^{2}}+\frac{x+3}{x^{2}+4}$
(iv) $\frac{A}{x+2}+\frac{B}{(x+2)^{2}}+\frac{C}{(x+2)^{3}}+\frac{D}{(x+2)^{4}}$
(v) none of the above
(c) A function $f(x)$ is known to be continuous, positive and concave up when $x \in[-2,2]$. Let T_{4} be the trapezoid approximation with 4 subdivisions of the integral $\int_{-2}^{2} f(x) d x$. Then compared with the integral, T_{4} is an
(i) overestimate
(ii) underestimate
(iii) exact estimate
(iv) cannot tell (more should be known about f)
(d) A function $f(x)$ is known to be continuous, positive and concave up when $x \in[-2,2]$. Let L_{4} be the left-point approximation with 4 subdivisions of the integral $\int_{-2}^{2} f(x) d x$. Then compared with the integral, L_{4} is an
(i) overestimate
(ii) underestimate
(iii) exact estimate
(iv) cannot tell (more should be known about f)
2. (14 pts) Consider the parametric curve given by $x=e^{-t} \cos t, y=e^{-t} \sin t$, for $t \in[0,+\infty)$.
(a) (4 pts) Roughly sketch or at least describe in words how the curve looks like.
(b) (10 pts) Find the total length of the curve when $t \in[0,+\infty)$. Obviously, you'll have an improper integral to compute.
3. (18 pts) The equation (in polar coordinates) $r=2-2 \sin \theta$ represents a cardioid.
(a) (2 pts) What is the axis of symmetry of the above cardioid?
(b) (6 pts) Sketch the graph of the cardioid in a cartesian coordinate system. Give the cartesian coordinates of the points where the graph intersects the coordinate axis (the intercepts).
(c) (10 pts) Find the value of the y-coordinate of the point(s) on the graph of the cardioid where the tangent line is horizontal.
4. (48 pts) Compute each of the following (12 pts each):
(a) $\int_{e}^{\infty} \frac{1}{t(\ln t)^{2}} d t$
(b) $\int \tan ^{5} x \sec x d x$
(c) $\int x^{2} e^{2 x} d x$
(d) $\int_{0}^{3} \frac{x^{3}}{\sqrt{9-x^{2}}} d x$
5. (14 pts) Use partial fractions (or other method) to compute

$$
\int \frac{x+2}{x\left(x^{2}+4\right)} d x
$$

