Test 3, Calculus 2 Spring 13

Name:
To receive credit you MUST SHOW ALL YOUR WORK. Answers which are not supported by work will not be considered.

1. (6 pts) Show that the sequence $a_{n}=\frac{5^{n}}{n!}$ is eventually monotone.
2. (10 pts) Compute the exact value for each of the following:
(a) $\lim _{n \rightarrow+\infty} 3(7)^{-n+2}$
(b) $\sum_{n=5}^{\infty} 3(7)^{-n+2}$
3. (10 pts) State and prove the k-the term divergence test for series.
4. (24 pts) For each of the following series, determine if the series is divergent, conditionally convergent, or absolutely convergent. Justify your answer: very little credit will be given just for a guess. (8 pts each)

$$
\text { (a) } \frac{1}{3}+\frac{2}{5}+\frac{3}{7}+\frac{4}{9}+\frac{5}{11}+\ldots
$$

(b) $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n^{2}+n}$
(c) $\sum_{n=2}^{\infty}(-1)^{n} \frac{1}{n \ln n}$
5. (10 pts) Using any method, but showing your work, find the Maclaurin series (Taylor series at $x_{0}=0$) for the function $f(x)=\ln (1+x)$.
6. (10 pts) Use Taylor/Maclaurin polynomials for e^{x} to approximate $e^{-0.2}$ with an error smaller than 10^{-6}.
7. (20 pts) Compute the interval of convergence for each series. Full justification is required. Be sure to investigate the end-points if necessary.
(a) $\sum_{k=1}^{\infty} \frac{5(x-2)^{k}}{k}$
(b) $\sum_{k=1}^{\infty} \frac{(5 x)^{k}}{k!}$
8. (10 pts) For each of the power series in the problem above, determine the function that they represent.

