Panther ID:

\qquad
Mini-Project - MAC2312
Spring 2013 - Instructor: T. Draghici
The goal of this mini-project is to give you some exposure to hyperbolic trig functions and their applications to hanging cables. You should read the first 4-5 pages of section 6.9 and understand Example 4 of this sections. As mentioned in this Example, the general function modeling a hanging cable between two poles is

$$
y=a \cosh \left(\frac{x}{a}\right)+c, \quad x \in[-b, b],
$$

where the parameters a and c depend on the composition of the cable and the height of the poles. The horizontal distance between the poles is $2 b$.

1. (10 pts) Use wolframalpha or some other device to get some plots of the above function for some a few values of a and c. About 4 graphs is enough.
2. (20 pts) Solve parts (a) and (b) of Pb .70 , section 6.9 (page 484 in the hard-cover edition of the textbook) for the function

$$
y=a \cosh \left(\frac{x}{a}\right)+c, \quad x \in[-b, b] .
$$

(This is basically just the same as for the slightly simpler function $y=a \cosh \left(\frac{x}{a}\right)$ which is considered in the problem in the textbook.)
3. (10 pts) As a continuation of Pb .2 , show that if the length L and the sag S of the cable are given, then one can find the parameter a of the cable by

$$
a=\frac{(L-2 S)(L+2 S)}{8 S}
$$

4. (10 pts) Suppose we have to use poles which are 60 ft high to suspend a cable of length $L=120 \mathrm{ft}$ which is known to create a sag of $S=30 \mathrm{ft}$. What should be the horizontal distance between the poles?
