\qquad

1. (a) An arithmetic sequence is a sequence $\left\{a_{n}\right\}$ defined recursively by $a_{n+1}=a_{n}+d$, for $n \geq 0$. Find the formula of the general term a_{n} of an arithmetic sequence in terms of the first term a_{0} and the common difference d. Is an arithmetic sequence convergent or divergent? Justify. Is an arithmetic sequence monotone? Justify.
(b) A geometric sequence is a sequence $\left\{a_{n}\right\}$ defined recursively by $a_{n+1}=r a_{n}$, for $n \geq 0$. Find the formula of the general term a_{n} of an arithmetic sequence in terms of the first term a_{0} and the common ratio r.

Depending on r, find $\lim _{n \rightarrow+\infty} a_{n}$ for a geometric sequence $\left\{a_{n}\right\}$ as above. Hint: Consider the cases $|r|<1, r>1, r<-1, r=1, r=-1$, separately.
2. Consider the sequence:

$$
a_{1}=\sqrt{3}, \quad a_{2}=\sqrt{3+2 \sqrt{3}}, \quad a_{3}=\sqrt{3+2 \sqrt{3+2 \sqrt{3}}}, \quad a_{4}=\sqrt{3+2 \sqrt{3+2 \sqrt{3+2 \sqrt{3}}}}, \ldots
$$

(a) Find a recursion formula for a_{n+1}.
(b) Use induction to prove that $0 \leq a_{n} \leq 3$, for all $n \geq 1$.
(c) Use induction to prove that the sequence $\left\{a_{n}\right\}$ is increasing.
(d) By (b) and (c) it follows that the sequence is convergent (why?). Find its limit.
3. A trust fund is designed to pay to you and your descendants one thousand dollars per year in perpetuity. If inflation depreciates those dollars at 5 percent per year, what is the value of this fund in the long run in terms of the current money?

