Name: \qquad

Panther ID:

\qquad

Exam 2
 Calculus II
 Spring 2019

To receive credit you MUST SHOW ALL YOUR WORK.

1. $(12 \mathrm{pts})$ Circle the correct answer (3 pts each):
(a) For the integral $\int \sqrt{9 x^{2}+4} d x$, the following substitution is helpful:
(i) $x=\tan \theta$
(ii) $3 x=2 \sin \theta$
(iii) $x=3 \sec \theta$
(iv) $3 x=2 \tan \theta$
(v) $w=9 x^{2}+4$
(Don't spend time evaluating the integral. It is not required.)
(b) The partial fraction decomposition for $\frac{x+3}{(x+2)^{2}\left(x^{2}+4\right)}$ is of the form:
(i) $\frac{A}{x+2}+\frac{B}{x^{2}+4}$
(ii) $\frac{A}{x+2}+\frac{B}{(x+2)^{2}}+\frac{C x+D}{x^{2}+4}$
(iii) $\frac{x+3}{(x+2)^{2}}+\frac{x+3}{x^{2}+4}$
(iv) $\frac{A}{x+2}+\frac{B}{(x+2)^{2}}+\frac{C}{(x+2)^{3}}+\frac{D}{(x+2)^{4}}$
(v) none of the above
(c) A function $f(x)$ is known to be continuous, positive and concave down when $x \in[-2,2]$. Let T_{4} be the trapezoid approximation with 4 subdivisions of the integral $\int_{-2}^{2} f(x) d x$. Then compared with the integral, T_{4} is an
(i) overestimate
(ii) underestimate
(iii) exact estimate
(iv) cannot tell (more should be known about f)
(d) A function $f(x)$ is known to be continuous, positive and concave down when $x \in[-2,2]$. Let $R_{4}^{\text {right }}$ be the right end-point approximation with 4 subdivisions of the integral $\int_{-2}^{2} f(x) d x$. Then compared with the integral, $R_{4}^{\text {right }}$ is an
(i) overestimate
(ii) underestimate
(iii) exact estimate
(iv) cannot tell (more should be known about f)
2. (8 pts) Write an expression corresponding to M_{4}, the midpoint approximation with 4 subdivisions, for the integral $\int_{0}^{1} e^{-t^{2}} d t$. Leave your answer in a calculator ready form, but you do not need to try to evaluate.

For Problems 3-6, evaluate each integral.
3. $(10 \mathrm{pts}) \int_{0}^{1} \frac{x}{4 x^{2}+1} d x$
4. (10 pts) $\int x^{2} e^{2 x} d x$
5. (10 pts) $\int \tan ^{3} x \sec x d x$
6. (12 pts) $\int_{0}^{2} \frac{x^{3}}{\sqrt{4-x^{2}}} d x$
7. (14 pts) Use partial fractions (or any other method) to compute

$$
\int \frac{x+2}{x\left(x^{2}+4\right)} d x
$$

8. (10 pts) The graph of $y=x^{2}$ for $0 \leq x \leq 2$ is revolved about the y-axis to form a tank that is then filled with salt water from the Dead Sea (weighing approximately $73 \mathrm{lb} / \mathrm{ft}^{3}$). How much work does it take to pump all of the water to the top of the tank? (Assume both x and y are measured in feet.) Just set-up of the integral is required, you DO NOT have to evaluate the integral.
9. (10 pts) The following reduction formula holds for any positive constant a and any integers $m \geq 1$ and $n \neq-1$.
$\int x^{n}(\ln a x)^{m} d x=\frac{x^{n+1}(\ln a x)^{m}}{n+1}-\frac{m}{n+1} \int x^{n}(\ln a x)^{m-1} d x$
Use the above reduction formula to compute
$\int x^{3}(\ln 2 x)^{2} d x$
10. (10 pts) Choose ONE proof. If you do both, only the larger score will be considered for this problem, but the second score may give some bonus towards a previous problem where your score is smaller.
(A) State and prove the integration by parts formula.
(B) Prove the reduction formula stated in Problem 2:

$$
\int x^{n}(\ln a x)^{m} d x=\frac{x^{n+1}(\ln a x)^{m}}{n+1}-\frac{m}{n+1} \int x^{n}(\ln a x)^{m-1} d x
$$

