The Fundamental Theorem of Calculus:

Assume that $f(x)$ is a continuous function on an interval $[a, b]$.
(i) If $F(x)$ is an anti-derivative for $f(x)$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

(ii) The net-signed area function $A(x)=\int_{a}^{x} f(t) d t$ is an anti-derivative for f on the interval. That is

$$
\frac{d}{d x}\left(\int_{a}^{x} f(t) d t\right)=f(x)
$$

Proof: We start with part (ii). We use the limit definition of the derivative to show $A^{\prime}(x)=f(x)$.

$$
A^{\prime}(x)=\lim _{h \rightarrow 0} \frac{A(x+h)-A(x)}{h}=\lim _{h \rightarrow 0} \frac{\int_{a}^{x+h} f(t) d t-\int_{a}^{x} f(t) d t}{h}=\lim _{h \rightarrow 0} \frac{\int_{x}^{x+h} f(t) d t}{h}
$$

For the last equality we used the additive property of integral on adjacent intervals:

$$
\int_{a}^{x} f(t) d t+\int_{x}^{x+h} f(t) d t=\int_{a}^{x+h} f(t) d t
$$

From the intermediate value theorem for the integral of $f(t)$ on the interval $[x, x+h]$, it follows that there is a point $x^{*} \in[x, x+h]$ so that

$$
\int_{x}^{x+h} f(t) d t=f\left(x^{*}\right) \cdot h
$$

Thus, we get

$$
A^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\int_{x}^{x+h} f(t) d t}{h}=\lim _{h \rightarrow 0} \frac{f\left(x^{*}\right) \cdot h}{h}=\lim _{h \rightarrow 0} f\left(x^{*}\right) .
$$

But now remember that x^{*} is trapped in the interval $[x, x+h]$. So when $h \rightarrow 0, x^{*}$ must approach x. Since the function f is continuous, we have $\lim _{h \rightarrow 0} f\left(x^{*}\right)=f(x)$. Hence we proved $A^{\prime}(x)=f(x)$. QED

Next, here is the simple proof of part (i) using part (ii). Let $F(x)$ be an anti-derivative of $f(x)$. We proved in (ii) that $A(x)$ is also an anti-derivative of $f(x)$, thus $F^{\prime}(x)=A^{\prime}(x)=f(x)$. It follows that $(F(x)-A(x))^{\prime}=$ $F^{\prime}(x)-A^{\prime}(x)=f(x)-f(x)=0$ on the entire interval, so $F(x)-A(x)=c$, where c is a constant. Write this as $F(x)=A(x)+c$. From this,

$$
F(b)-F(a)=(A(b)+c)-(A(a)+c)=A(b)-A(a) .
$$

But from the definition of $A(x)$, we get

$$
A(a)=\int_{a}^{a} f(t) d t=0 \text { and } A(b)=\int_{a}^{b} f(t) d t
$$

Thus, we proved that

$$
F(b)-F(a)=\int_{a}^{b} f(t) d t . \mathrm{QED}
$$

