Name:			Panther ID:	
Quiz 2	MAC-2313	Fall 2018		
1. (3 pts) N	Aatch the following	g equations with the appropriat	e surface:	
(i) $x^2 - 2y^2$	$-3z^2 = 1$			
(ii) $x^2 - 2y^2$	$z^2 - 3z^2 = 0$			
(iii) $(x+1)^2 + 2(y-1)^2 + 3(z-2)^2 = 10$				
(iv) $x - 2y^2$	$z^2 - 3z^2 = 1$,		
(v) $(x+1)^2$	$x^2 + 2(y-1)^2 - 3(z)^2$	$(-2)^2 = 10.$		
(vi) $x^2 + 3z$	$z^2 = 1$			
(a) elliptic	cylinder	(b) hyperboloid with one sheet	(c) hyperbo	loid with two sheets
(d) ellip	otic cone	(e) elliptic paraboloid	(f) ellipsoid	

2. (8 pts) For both parts of this problem, consider the line L given by x = 1 - 6t, y = 3 + 5t, z = 2 + 4t, and the plane π given by x + 2y - z = 1.

(a) (4 pts) Determine if the line L intersects the plane π , is parallel to the plane π , or is contained in the plane π . Justify your answer.

(b) (4 pts) Find the equation of a plane $\tilde{\pi}$ which contains the given line L and is perpendicular to the given plane π .