\qquad

Group Nr :

\qquad
Worksheet 09/06 - MAC 2313, F'18

1. Sketch the solid enclosed between $4 x^{2}+4 y^{2}+z^{2}=5$ and $z=x^{2}+y^{2}$ and describe their curve of intersection.
2. An airplane flies the route Miami-New Orleans. Your task is to approximate the shortest travel distance (which determines the necessary fuel, etc.). Use that the radius of Earth is $R=6370 \mathrm{~km}$ (and assume that the plane flies close to the surface of the Earth).
(a) First solve the problem assuming that Miami and New Orleans have the same latitude; so assume the geographical coordinates of the two cites are Miami $\left(30^{\circ} \mathrm{N}, 80^{\circ} \mathrm{W}\right)$ and New Orleans $\left(30^{\circ} \mathrm{N}, 90^{\circ} \mathrm{W}\right)$.
(b) Now solve the problem using the more precise geographical coordinates Miami $\left(25.74^{\circ} \mathrm{N}, 80.19^{\circ} \mathrm{W}\right)$ and New Orleans $\left(29.95^{\circ} \mathrm{N}, 90.07^{\circ} \mathrm{W}\right)$.
(c) More generally, if P_{1}, P_{2} are two points on the same sphere of radius R and the spherical coordinates of the two points are $P_{1}\left(R, \theta_{1}, \phi_{1}\right), P_{2}\left(R, \theta_{2}, \phi_{2}\right)$ describe a way to find the shortest distance on the sphere between P_{1} and P_{2}.

Hint 1: On a sphere, the geodesics (paths of shortest distance) are arcs on great circles, that is circles obtained from the intersection of the sphere with planes through the center of the sphere.
Hint 2: Suppose the sphere has center at the origin O and two points P_{1}, P_{2} are given on the sphere. The geodesic between P_{1} and P_{2} is the (smaller) arc obtained from cutting the sphere with the plane through O, P_{1}, P_{2}.
Hint 3: The angle $\angle\left(P_{1} O P_{2}\right)$ is important. Use the vectors $\mathbf{O P}_{\mathbf{1}}$ and $\mathbf{O P}_{\mathbf{2}}$ to find it.

