\qquad
Spring Break Worksheet - due Wednesday, March 19

Panther ID: \qquad

- MAC 2312, Spring 2014

1. (a) Use IBP to derive a reduction formula for

$$
\int x^{n} e^{-w x} d x, \text { where } n \text { is a nonnegative integer and } w \text { is a positive constant. }
$$

Next, you will use your reduction formula in part (a) to show that

$$
\int_{0}^{+\infty} x^{n} e^{-w x} d x=\frac{n!}{w^{n+1}}
$$

Follow these steps:
(b) Denote $I_{n}=\int_{0}^{+\infty} x^{n} e^{-w x} d x$. Compute directly $I_{0}=\int_{0}^{+\infty} e^{-w x} d x$.
(c) Use l'Hopital to show that $\lim _{x \rightarrow+\infty} x^{n} e^{-w x}=0$.
(d) Use the reduction formula from part (a) and the observation in (c), to get the recursive formula $I_{n}=\frac{n}{w} I_{n-1}$, for all $n \geq 1$.
(e) From (d) and (b), conclude that $I_{n}=\frac{n!}{w^{n+1}}$.

Note: You have to trust me that the improper integral you computed is an important one. Hence, it was worth the effort!

