1. Among other things, in this exercise you'll prove $\sum_{k=1}^{\infty} 1 / k=+\infty$.
(a) Let $n \geq 2$ be an integer.

Find the area below the graph of $f(x)=1 / x$
and above the x-axis on the interval $[1, n]$.
(your answer will, of course, depend on n).
(b) Shade the left endpoint Riemann sum approximation of the area in part (a)
for the division of the interval $[1, n]$
into sub-intervals of length 1.
Write the expression for this Riemann sum.
(c) Explain why from parts (a) and (b) you obtain the inequality

$$
\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n-1} \geq \ln n, \text { and further, from this, } \sum_{k=1}^{+\infty} \frac{1}{k}=+\infty
$$

In the remaining parts of this exercise you'll show that the sequence

$$
a_{n}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n-1}-\ln n \text { is convergent when } n \rightarrow \infty .
$$

(The limit is the so called Euler's γ constant, $\gamma \approx 0.5772 \ldots$..)
(d) Relating to parts (a) and (b) of the exercise, determine what a_{n} represents geometrically. If you understand this, you should be able to see that $a_{n}>0$, for all $n \geq 2$ and that the sequence $\left\{a_{n}\right\}$ is strictly increasing. Briefly explain why these statements are true.
(e) Use the right-hand Riemann sum to show that $a_{n}<1$, for all $n \geq 2$.
(f) From parts (c) and (d) it follows that the sequence $\left\{a_{n}\right\}$ is convergent. In one sentence explain why.
2. For each of the following series, first write them using summation notation, then find a closed form for the n-th term S_{n} of the sequence of partial sums and then finally determine whether the series converges:
(a) $\ln \frac{1}{2}+\ln \frac{2}{3}+\ln \frac{3}{4}+\ln \frac{4}{5}+\ldots$
(b) $\frac{1}{3}+\frac{1}{8}+\frac{1}{15}+\frac{1}{24}+\frac{1}{35}+\ldots$

Note: Both series are what we call "telescopic series".

