1. Decide if each of the following series is convergent or divergent. Specify which test you are using and show how the test applies.

(a)
$$\sum_{k=0}^{\infty} \frac{1}{(2k+1)^2}$$

(b)
$$\sum_{k=1}^{\infty} \frac{k}{\sqrt{k^3 + 1}}$$

(c)
$$\sum_{k=1}^{\infty} \frac{(k!)^2}{(2k)!}$$

- **2.** Find the values of p for which the series is convergent $\sum_{k=2}^{\infty} \frac{1}{k(\ln k)^p}$
- 3. True or False. Answer and briefly justify in each case.
- (a) If $S_n = \sum_{k=1}^n a_k$ and $\lim_{n \to \infty} S_n$ does not exist or is not finite, then $\sum_{k=1}^\infty a_k$ is a divergent series.
- (b) If $\{a_k\}_k$ is a convergent sequence then the series $\sum_{k=1}^{\infty} a_k$ is also convergent.
- (c) If $\{a_k\}_k$ is a divergent sequence then the series $\sum_{k=1}^{\infty} a_k$ is also divergent
- (d) If $\sum_{k=1}^{\infty} a_k$ converges to A and $\sum_{k=1}^{\infty} b_k$ converges to B, then $\sum_{k=1}^{\infty} (a_k b_k)$ converges to A B.
- (e) If $a_k > 0$ for all k and $\sum_{k=1}^{\infty} a_k$ converges, then $\sum_{k=1}^{\infty} (a_k)^2$ also converges.