\qquad

Worksheet week 4
 - MAC 2312, Spring 2014

1. Find the area of the region bounded between the curves $x=y^{2}$ and $x=2-y$.
2. Find the area of the regions between $y=\sin x$ and $y=\sin (2 x)$, for $0 \leq x \leq \pi$.
3. Use the slicing method to set up an integral that gives the volume of the solid obtained when the region in problem 1 is rotated around the line $x=4$. You are not required to evaluate the integral, but you should sketch the solid.
4. (Volume of a sphere.) Consider the region above the x-axis bounded by the semi-circle $y=\sqrt{R^{2}-x^{2}}$ and rotate this region around the x-axis. Use the slicing method to find the formula for the volume of the sphere of radius R. Full computation is required now.
5. (Bonus 2 pts) Find a function f and a number a such that

$$
4+\int_{a}^{x} \frac{f(t)}{t} d t=\sqrt{x}, \text { for all } x>0
$$

