Name:		Panther ID:	
Midterm Exam	MAT 3501	Fall 2016	
1. (25 pts) For each of the your answer. (2 pts answer	following statements answer , 3 pts justification)	if it is True or False.	Then give a one line justification of
(a) The only consecutive in (Recall that 1, by definition	tegers that are both prime a a, is not prime nor composite	are 2 and 3. True e.)	False
Justification:			
(b) $(x - 2)$ is a factor of $p(x - 2)$ Justification:	$x) = x^4 - 6x - 4.$ Tr	ue False	
(c) For all <i>a</i> , <i>b</i> rational num Justification:	nbers, a^b is rational.	True False	
(d) For all integers l, m, n , Justification:	if $l (mn)$ then $l m$ or $l n$.	True False	
(e) If a, b are integers and $gcd(a, b) = 1$, then $lcm(a, b) = ab$. True False Justification:			
(f) If p is prime and $p \ge 5$,	then $(p+1) p!$. The	rue False	
Justification:			

2. (10 pts) Find **all** roots of the equation $x^3 + 2x + 3 = 0$. (Hint: the equation has a rational root.)

3. (10 pts) Let x₁, x₂, x₃ ∈ C be the roots of the polynomial p(x) = 2x³ + 3x + 1. Use Viete's relations to find:
(a) x₁ + x₂ + x₃
(b) x₁x₂x₃
(c) 1/x₁ + 1/x₂ + 1/x₃

4. (16 pts) The product rule in Calculus states that (f(x)g(x))' = f'(x)g(x) + f(x)g'(x).
(a) (6 pts) Show that there is a product rule for 3 functions and that it is

$$(f(x)g(x)h(x))' = f'(x)g(x)h(x) + f(x)g'(x)h(x) + f(x)g(x)h'(x)$$

(b) (10 pts) Generalize the product rule for n functions and prove it by induction.

5. (10 pts) Show that, for any positive integer n, the greatest common divisor of 2n + 13 and n + 7 is 1. As a consequence, justify that the fraction $\frac{n+7}{2n+13}$ is always in lowest terms.

6. (10 pts) Using mods, find the remainder of $2016^{2015} + 2015^{2016}$ when divided by 7.

- 7. (24 pts) Choose TWO of the following three (12 pts each)
- (A) State and prove the Rational Root Theorem (it's OK if you give the detailed proof for just 1/2 of it).
- (B) State and prove the quadratic formula.
- (C) Prove that there are infinitely many primes (you can assume the prime factorization theorem).