Name: \qquad
\qquad
Midterm Exam
MAT 3501

1. (25 pts) For each of the following statements answer if it is True or False. Then give a one line justification of your answer. (2 pts answer, 3 pts justification)
(a) The only consecutive integers that are both prime are 2 and 3 . True False (Recall that 1, by definition, is not prime nor composite.)

Justification:

(b) $(x-2)$ is a factor of $p(x)=x^{4}-6 x-4$. True False

Justification:

(c) For all a, b rational numbers, a^{b} is rational.

True False
Justification:
(d) For all integers l, m, n, if $l \mid(m n)$ then $l \mid m$ or $l \mid n$.

True False

Justification:

(e) If a, b are integers and $\operatorname{gcd}(a, b)=1$, then $\operatorname{lcm}(a, b)=a b$.

True False

Justification:

(f) If p is prime and $p \geq 5$, then $(p+1) \mid p!. \quad$ True False

Justification:

2. (10 pts) Find all roots of the equation $x^{3}+2 x+3=0$. (Hint: the equation has a rational root.)
3. (10 pts) Let $x_{1}, x_{2}, x_{3} \in \mathbf{C}$ be the roots of the polynomial $p(x)=2 x^{3}+3 x+1$. Use Viete's relations to find:
(a) $x_{1}+x_{2}+x_{3}$
(b) $x_{1} x_{2} x_{3}$
(c) $\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}$
4. $(16 \mathrm{pts})$ The product rule in Calculus states that $(f(x) g(x))^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$.
(a) (6 pts$)$ Show that there is a product rule for 3 functions and that it is

$$
(f(x) g(x) h(x))^{\prime}=f^{\prime}(x) g(x) h(x)+f(x) g^{\prime}(x) h(x)+f(x) g(x) h^{\prime}(x)
$$

(b) (10 pts) Generalize the product rule for n functions and prove it by induction.
5. (10 pts) Show that, for any positive integer n, the greatest common divisor of $2 n+13$ and $n+7$ is 1 . As a consequence, justify that the fraction $\frac{n+7}{2 n+13}$ is always in lowest terms.
6. (10 pts) Using mods, find the remainder of $2016^{2015}+2015^{2016}$ when divided by 7 .
7. (24 pts) Choose TWO of the following three (12 pts each)
(A) State and prove the Rational Root Theorem (it's OK if you give the detailed proof for just $1 / 2$ of it).
(B) State and prove the quadratic formula.
(C) Prove that there are infinitely many primes (you can assume the prime factorization theorem).

