Name:

\qquad

Panther ID:

\qquad

Worksheet - Sep. 1

MAT 3501
Fall 2016

1. In each case, prove using induction:
(a) For all $n \geq 0,3^{2 n+1}+2^{n+2}$ is divisible by 7 .
(b) (pb. 14 section 8.3) Show that the sum of the interior angles of a convex polygon is $180(n-2)$ degrees, where n is the number of sides of the polygon.
(c) For all $n \geq 1,1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$.
2. (Similar to pb. 4 in 2.4) (a) Find the prime decomposition of each of the numbers 20, 24, 120.
(b) List all divisors (factors) of 120 (you should have 16 of them). Find a good way to count them. Hint: A divisor of 120 has to be of the form $2^{k_{1}} \cdot 3^{k_{2}} \cdot 5^{k_{3}}$. What are the values that k_{1}, k_{2}, k_{3} can have?
(c) Prove that if the prime decomposition of the number N is $N=p_{1}^{n_{1}} \cdot p_{2}^{n_{2}} \cdot \ldots \cdot p_{s}^{n_{s}}$, then the number of divisors of N is $\left(n_{1}+1\right)\left(n_{2}+1\right) \ldots\left(n_{s}+1\right)$.
3. Find a number that when divided by 2 is a perfect square, when divided by 3 is a perfect cube, and when divided by 5 is a perfect fifth power. (Hint: Use the prime factorization thm.)
