Name: \qquad Panther ID: \qquad

Exam 1

 MAT 3501 Fall 20181. (15 pts) For each of the following, answer if the statement is True or False. Then give a one line justification of your answer. (2 pts answer, 3 pts justification)
(a) The product of any two irrational numbers is irrational. True False Justification:
(b) If n is composite, then n has a divisor d so that $d \leq \sqrt{n}$. True False Justification:
(c) In base $2, \overline{111}+\overline{111}=\overline{1110} . \quad$ True \quad False

Justification:
2. (15 pts) Find the prime factorization for each of the numbers 216 and 2016.

Then find $\operatorname{gcd}(216,2016), \operatorname{lcm}(216,2016)$.
3. (15 pts) Prove (by induction, or otherwise) that for all $n \geq 0,3^{2 n+1}+2^{n+2}$ is divisible by 7 .
4. (15 pts) (a) (10 pts) Show that for a number written in base $10, \overline{a_{n} a_{n-1} \ldots a_{2} a_{1} a_{0}}$, we have

$$
\overline{a_{n} a_{n-1} \ldots a_{2} a_{1} a_{0}} \equiv a_{0}-a_{1}+a_{2}-\ldots+(-1)^{n} a_{n} \quad(\bmod 11) .
$$

(b) (5 pts) Apply part (a) to find the remainder of 987654321 when divided by 11.
5. (15 pts) Show that if the prime decomposition of a number is $N=p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots p_{k}^{n_{k}}$, with $p_{1}, p_{2}, \ldots, p_{k}$ distinct primes, then the number of divisors of N (including 1 and N) is given by $\left(n_{1}+1\right)\left(n_{2}+1\right) \ldots\left(n_{k}+1\right)$.
6. (15 pts) Describe all integer solutions (if any) of the Diophantine equation $9 x+7 y=5$.
7. (15 pts) Choose ONE of the following proofs. If you do both, the second score may give some bonus towards a previous problem with a lower score.
(A) Show that if a, b are positive integers, then there exist integers m, n so that $m a+n b=\operatorname{gcd}(a, b)$.
(B) Show that if p is a prime number and $p \mid(a b)$ then $p \mid a$ or $p \mid b$. (You may use the result in (B) for proving (C).)

