Name: \qquad

Panther ID:

\qquad

Exam 2

MAT 3501
Fall 2018

1. (25 pts) For each of the following, answer if the statement is True or False. Then give a brief justification of your answer. (2 pts answer, 3 pts justification)
(a) $e^{i \pi}+1=0$.
True
False

Justification:
(b) Any irrational number is transcendental.

False
Justification:
(c) The remainder of $x^{2018}+1$ when divided by $x+1$ is 2 .

True False
Justification:
(d) There is no polynomial $p(x)$ of degree 3 and with real coefficients, so that $p(1)=p(2)=p(3)=0$ and $p(4)=14$.

True
False
Justification:
(e) $3^{\sqrt{3}}$ is transcendental. True False

Justification:
2. (12 pts) Factor and find all solutions (real or complex) of the equation $x^{5}-4 x=0$.
3. (16 pts) (a) (4 pts) Express $\frac{1-2 i}{1+2 i}$ in the $a+b i$ form.
(b) (6 pts) Find all complex solutions of $w^{3}=i$ and picture them in the complex plane.
(d) (6 pts$)$ Recall that the principal $\operatorname{logarithm}$ of $z, \log z$, is defined by

$$
\log \mathrm{z}=\ln \mathrm{r}+\mathrm{i}(\theta), \text { if } \mathrm{z}=\mathrm{re}^{\mathrm{i} \theta}
$$

and the principal value of z^{w} is defined by $z^{w}=e^{w \log z}$. Find the principal value of $(-1)^{i}$.
4. (12 pts) Use the polar form to simplify
$\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)^{2018}$
For full credit, put your final answer in the form $a+b i$.
5. (24 pts) Consider the equation $x^{5}+x+5=0$ and let $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ be its roots. (Don't try to find the roots explicitly, you will not be able to do it.)
(a) (6 pts) Find the sum $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}$ and the product $x_{1} x_{2} x_{3} x_{4} x_{5}$.
(b) (6 pts) Show that at least one of the roots is real.
(c) (6 pts$)$ Show that none of the roots is rational.
$(\mathrm{d})^{*}(6 \mathrm{pts})$ Show that exactly one of the roots is real.
6. (18 pts) Choose ONE of the following proofs. You can choose to do TWO proofs with the second score giving possible bonus towards a previous problem with a lower score.
(A) State and prove the Rational Root Theorem (it's OK if you give the detailed proof for just $1 / 2$ of it).
(B) State and prove the quadratic formula.
(C) State the Fundamental Theorem of Algebra and prove the easy part.

