Name:		Panther ID:
Worksheet - Sep. 4	MAT 3501	Fall 2018

1. Use the Euclidean algorithm to find gcd(360, 132). (You can confirm your result by listing the divisors of each and then finding the common divisors.)

2. Prove that any two successive Fibonacci numbers $F_n, F_{n+1}, n \ge 2$ are relatively prime. Recall that the Fibonacci sequence is defined recursively by $F_{n+1} = F_n + F_{n-1}$, for $n \ge 1$ and $F_0 = 1, F_1 = 1$.

3. Prove that if ad - bc = 1 then the fraction $\frac{a+b}{c+d}$ is irreducible. (Assume that a, b, c, d are all positive integers.)

4. With this exercise we'll prove (without using prime factorization) that

$$lcm(a,b) \cdot gcd(a,b) = ab$$

Fill in the following sketch of proof: Let D = gcd(a, b). Then $a = a_1 \cdot D$, $b = b_1 \cdot D$, for some integers a_1, b_1 .

(a) Argue that $gcd(a_1, b_1) = 1$ (that is, a_1 and b_1 must be relatively prime).

(b) Next let $m = \frac{ab}{gcd(a,b)} = a_1b_1D$. Note that *m* is a common multiple of *a* and *b* (why?). It remains to show that *M* is the *lowest* common multiple.

(c) Let M another common multiple of a and b. We'll show that m|M, so $m \leq M$. To get this, write M = ka = lb, for some integers k, l, or $M = ka_1D = lb_1D$. On the other hand, by part (a), there are integers x, y so that $a_1x + b_1y = 1$. Multiply this relation by M and show that both terms in the left side are multiples of m.