Name:

\qquad Panther ID: \qquad
Worksheet - Sep. 4
MAT 3501
Fall 2018

1. Use the Euclidean algorithm to find $\operatorname{gcd}(360,132)$. (You can confirm your result by listing the divisors of each and then finding the common divisors.)
2. Prove that any two successive Fibonacci numbers $F_{n}, F_{n+1}, n \geq 2$ are relatively prime. Recall that the Fibonacci sequence is defined recursively by $F_{n+1}=F_{n}+F_{n-1}$, for $n \geq 1$ and $F_{0}=1, F_{1}=1$.
3. Prove that if $a d-b c=1$ then the fraction $\frac{a+b}{c+d}$ is irreducible. (Assume that a, b, c, d are all positive integers.)
4. With this exercise we'll prove (without using prime factorization) that

$$
\operatorname{lcm}(a, b) \cdot g c d(a, b)=a b .
$$

Fill in the following sketch of proof: Let $D=\operatorname{gcd}(a, b)$. Then $a=a_{1} \cdot D, b=b_{1} \cdot D$, for some integers a_{1}, b_{1}.
(a) Argue that $\operatorname{gcd}\left(a_{1}, b_{1}\right)=1$ (that is, a_{1} and b_{1} must be relatively prime).
(b) Next let $m=\frac{a b}{\operatorname{gcd}(a, b)}=a_{1} b_{1} D$. Note that m is a common multiple of a and b (why?).

It remains to show that M is the lowest common multiple.
(c) Let M another common multiple of a and b. We'll show that $m \mid M$, so $m \leq M$. To get this, write $M=k a=l b$, for some integers k, l, or $M=k a_{1} D=l b_{1} D$. On the other hand, by part (a), there are integers x, y so that $a_{1} x+b_{1} y=1$. Multiply this relation by M and show that both terms in the left side are multiples of m.

