Name:

\qquad Panther ID: \qquad
Worksheet - Oct. 25 MAT 3501 Fall 2018

1. Compute $\sqrt{-i}$ and $\sqrt[4]{1+i}$. Leave your answer in polar form for the second one.
2. Find all solutions of $x^{5}+1=0$ (polar form ok) and plot them in the complex plane.
3. Given complex numbers $z_{1}=1+2 i$ and $z_{2}=2-i$, find a third complex number point z_{3} so that $\triangle z_{1} z_{2} z_{3}$ is an equilateral triangle.
4. Use complex numbers to prove the following theorem attributed to Napoléon Bonaparte: If three equilateral triangles are erected outwards on the sides of an arbitrary triangle, show that the centers of these equilateral triangles form another equilateral triangle. (Note: This is called the outer Napoléon triangle.)
5. Show the theorem in problem 2 remains true if "outwards" is replaced by "inwards". (Thus, there is also an inner Napoléon triangle.)
