To receive credit you MUST SHOW ALL YOUR WORK.

- **1.** (12 pts) Define each of the following (4 pts each):
- (a) Span{ $\mathbf{v}_1, ..., \mathbf{v}_k$ }, where $\mathbf{v}_1, ..., \mathbf{v}_k$ are vectors in a vector space V.

(b) Basis of a vector space V

(c) The eigenspace E_{λ} corresponding to an eigenvalue λ of a $n\times n$ matrix A

2. (14 pts) Show that a linear transformation is one to one (injective) if and only if its kernel is $\{0\}$.

3. (12 pts) Suppose $L : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation, that $L\begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} -1\\1 \end{pmatrix}$ and $L\begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 1\\2 \end{pmatrix}$. What is $L\begin{pmatrix} 3\\2 \end{pmatrix}$? In general, what is $L\begin{pmatrix} x_1\\x_2 \end{pmatrix}$?

4. (14 pts) Let
$$A = \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix}$$
. Compute A^n .

5. (16 pts) In $\mathbb{R}_2[t]$, let $\mathbf{b}_1 = 1$, $\mathbf{b}_2 = 1 + t$, $\mathbf{b}_3 = t + t^2$.

(a) (8 pts) Show that $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ is a basis in $\mathbb{R}_2[t]$.

(b) (8 pts) Let $d/dt : \mathbb{R}_2[t] \to \mathbb{R}_2[t]$ be the derivative map. Find the matrix of d/dt with respect to the basis \mathcal{B} from part (a).

- **6.** (22 pts) Let $a, b \in \mathbb{R}$, with $b \neq 0$.
- (a) (8 pts) Show that the matrix $A = \begin{pmatrix} a & 0 \\ b & a \end{pmatrix}$ is not diagonalizable.
- (b) (14 pts) Find the solution $\mathbf{x}(t)$ of the coupled equations $d\mathbf{x}/dt = A\mathbf{x}$, with $\mathbf{x}(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

7. (10 pts)

Is the matrix
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 3 \end{pmatrix}$$
 diagonalizable? Justify your answer.

8. (10 pts) Show that two conjugate matrices have the same eigenvalues.