Midterm Exam - MAS 5145 Summer06 NAME

To receive credit you MUST SHOW ALL YOUR WORK.

1. (12 pts) Define each of the following (4 pts each):
(a) $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$, where $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are vectors in a vector space V.
(b) Basis of a vector space V
(c) The eigenspace E_{λ} corresponding to an eigenvalue λ of a $n \times n$ matrix A
2. (14 pts) Show that a linear transformation is one to one (injective) if and only if its kernel is $\{\mathbf{0}\}$.
3. (12 pts) Suppose $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation, that $L\binom{1}{0}=\binom{-1}{1}$ and $L\binom{0}{1}=\binom{1}{2}$. What is $L\binom{3}{2}$? In general, what is $L\binom{x_{1}}{x_{2}}$?
4. (14 pts) Let $A=\left(\begin{array}{rr}2 & 3 \\ -1 & -2\end{array}\right)$. Compute A^{n}.
5. (16 pts) In $\mathbb{R}_{2}[t]$, let $\mathbf{b}_{1}=1, \mathbf{b}_{2}=1+t, \mathbf{b}_{3}=t+t^{2}$.
(a) (8 pts) Show that $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$ is a basis in $\mathbb{R}_{2}[t]$.
(b) (8 pts) Let $d / d t: \mathbb{R}_{2}[t] \rightarrow \mathbb{R}_{2}[t]$ be the derivative map. Find the matrix of $d / d t$ with respect to the the basis \mathcal{B} from part (a).
6. (22 pts) Let $a, b \in \mathbb{R}$, with $b \neq 0$.
(a) (8 pts) Show that the matrix $A=\left(\begin{array}{cc}a & 0 \\ b & a\end{array}\right)$ is not diagonalizable.
(b) (14 pts) Find the solution $\mathbf{x}(t)$ of the coupled equations $d \mathbf{x} / d t=A \mathbf{x}$, with $\mathbf{x}(0)=\binom{1}{0}$.
7. (10 pts)

Is the matrix $A=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 3\end{array}\right)$ diagonalizable? Justify your answer.
8. (10 pts) Show that two conjugate matrices have the same eigenvalues.

