Due Tuesday, July 3. To receive credit you MUST SHOW ALL YOUR WORK.

1. (10 pts) Let $\mathbf{R}_{3}[t]$ be the vector space of polynomials $p(t)$ of degree at most 3 and let W be the set of all polynomials $p(t) \in \mathbf{R}_{3}[t]$ such that $p(1)=0$.
(a) Show that W is a vector subspace of $\mathbf{R}_{3}[t]$.
(b) Find a basis for W, and show that what you found is really a basis.
2. (10 pts) Let V be a vector space of dimension n.
(a) Show that any set of n vectors that span V forms a basis for V.
(b) Show that any set of n linearly independent vectors of V forms a basis for V.
