\qquad

1. (6 pts) Fill in the exact values:
$\log _{3} 81=$
$e^{2 \ln 3}=$
$\arctan (1)=$
$\left(\frac{100}{9}\right)^{-1 / 2}=$
$\sin \left(\frac{7 \pi}{6}\right)=$
$\cos 0=$
2. (4 pts) Circle the correct answer (assume that $x \neq 0$):
(a) The expression $\frac{3 x^{2}}{x^{4}+9 x^{2}}$ is equivalent with:
(i) $\frac{1}{x^{2}+3}$
(ii) $\frac{3}{x^{2}}+\frac{1}{3}$
(iii) $\frac{1}{x^{4}+3}$
(iv) $\frac{3}{x^{2}+9}$
(v) $\frac{3}{10 x^{2}}$
(b) The expression $\frac{x^{2}}{\sqrt[3]{x^{2}}}$ is equivalent with:
(i) \sqrt{x}
(ii) 1
(iii) $x \sqrt[3]{x}$
(iv) $x^{-1 / 3}$
(v) none of the above
3. (4 pts) (a) (2 pts) The domain of $f(x)=-1+\sqrt{x+4}$ is \qquad .
(b) (2 pts) For $f(x)=-1+\sqrt{x+4}$, determine the formula of its inverse function $f^{-1}(x)$.
4. (4 pts) Sketch the graph of the function below.

Write the coordinates of axis intercepts.
$g(x)= \begin{cases}-2 x+1 & \text { if } x<0 \\ 2 x-x^{2} & \text { if } x \geq 0\end{cases}$
5. (6 pts) In each case, circle "True" or "False".

If $f(x)=2-3 x$, then $f(x+4)=2-3 x+4=6-3 x$
True False
Let $f(x)$ be an invertible function with inverse $f^{-1}(x)$. If $f(5)=5$, then $f^{-1}(5)=\frac{1}{5}$
True False
For all $x>0, y>0, \quad \sqrt{x^{2}+y^{2}}=x+y$
True False
For all $x>0, y>0, \quad \log (x y)=\log x+\log y$ True False

For all real $x, \quad \frac{x+2}{x^{2}+4}=\frac{1}{x+2}$ True False

For all real $x, \quad \cos ^{2} x=1-\sin ^{2} x$ True False
6. (3 pts) Sketch the graph of $y=3 \sin x-1$ and label the coordinates of at least two of the maximum points
(that is, points where y is maximum).
7. (5 pts) (a) (3 pts) Find the equation of the line that contains the points $(0,5)$ and $(2,-3)$.
(b) (2 pts) Find the equation of the circle with center at $(2,0)$ and with radius 2 .
8. (3 pts) If $f(x)=3 x-x^{2}$, compute and simplify the expression $\frac{f(2+h)-f(2)}{h}$.
9. (10 pts) Find all real solutions of the following equations (2 pts each):
(a) $x^{4}-3 x^{2}-4=0$
(b) $2 x^{4 / 3}-x=0$
(c) $2 \cos ^{2} x=1 \quad$ OK to find all solutions $x \in[0,2 \pi]$ for this one.
(d) $5 \cdot\left(2^{3 x}\right)=7 \quad$ Leave your answer as a logarithm for this one.
(e) $a x^{2}+b x+c=0 \quad$ I want to check you know the quadratic formula. When are the solutions real?
10. (5 pts) For a $16: 9$ widescreen TV, the ratio (width of screen)/(height of screen) is $16 / 9$.
(a) (2 pts) For a 16:9 TV, what is the angle that the diagonal is making with the horizontal? Leave your answer as an inverse trigonometric function.
(b) (3 pts) For a 16:9 TV, find a function expressing the area of the screen, A, in terms of its diagonal length d.

