Worksheet (homework) week 6

1. Find the equation of the tangent line to the graph $f(x)=x \sin x$ at $x=\frac{\pi}{2}$.
2. Find the coordinates of a point P on the graph of $y=f(x)=x^{2}+3$ with the property that the tangent line to the graph at P will pass through the origin.
3. Use quotient rule to prove $(\cot x)^{\prime}=-\csc ^{2} x$ and $(\csc x)^{\prime}=-\csc x \cot x$. Assume known the derivatives of $\sin x$ and $\cos x$.
4. The following provides a proof for the quotient rule from the product rule.

Let $q(x)=\frac{f(x)}{g(x)}$, be the quotient of two functions $f(x)$ and $g(x)$.
The goal is to get a formula for $q^{\prime}(x)$ in terms of $f^{\prime}(x), g^{\prime}(x), f(x), g(x)$. Proceed as follows:
Start from $q(x) \cdot g(x)=f(x)$. (Why is this true?)
Take the derivative of both sides of the above and use product rule on the left side. Then solve for $q^{\prime}(x)$ and do a bit of algebra to eventually get the familiar quotient rule formula.

