\qquad
(b) $\int \tan ^{2} x \sec ^{4} x d x$
2. The region bounded between the graph of $\sin x$ and the x-axis when $x \in[0, \pi]$ is rotated around the y-axis; the solid formed has volume V_{1}. Then the same region is rotated around the x-axis; the solid formed has volume V_{2}. Find V_{1} and V_{2} and observe that $V_{1}=4 V_{2}$.
3. (a) Derive a reduction formula for

$$
\int \sin ^{n} x d x
$$

where n is a positive integer. You may check formula (3), with $m=0$, on bottom of page 494 textbook to confirm your result.
(b) Use part (a) to derive a recursion formula for

$$
A_{n}=\int_{0}^{\pi / 2} \sin ^{n} x d x
$$

(c) Find A_{1} directly, then find A_{3}, A_{5} using the recursion formula. Write a general formula for A_{n} when n is odd.
(d) Find A_{0} directly, then find A_{2}, A_{4} using the recursion formula. Write a general formula for A_{n} when n is even. The general formulas for A_{n} are the so-called Wallis sine formulas.

