Trigonometric substitutions are generally useful when dealing with integrals involving expressions of the type $\sqrt{a^2-x^2}$, or $\sqrt{a^2+x^2}$, or $\sqrt{x^2-a^2}$. The general idea of a trig. substitution is to use the basic trig. identities

$$\sin^2 \theta + \cos^2 \theta = 1$$
, $\tan^2 \theta + 1 = \sec^2 \theta$,

to get rid of square-root in the integral.

General rules: (I wrote the first one, you should fill in the blanks for the other two)

- If the integrand involves $\sqrt{a^2-x^2}$, then the substitution $x=a\sin\theta$ will usually be useful because $\sqrt{a^2-x^2}=\sqrt{a^2-a^2\sin^2\theta}=\sqrt{a^2(1-\sin^2\theta)}=\sqrt{a^2\cos^2\theta}=a\cos\theta$.
- If the integrand involves $\sqrt{a^2 + x^2}$, then the substitution $x = \underline{\hspace{1cm}}$ will usually be useful because $\sqrt{a^2 + x^2} = \underline{\hspace{1cm}}$
- If the integrand involves $\sqrt{x^2 a^2}$, then the substitution x =_____ will usually be useful because $\sqrt{x^2 a^2} =$ _____

Next, compute each of the integrals, by using the appropriate trigonometric substitution.

$$1. \int \frac{dx}{x^2 \sqrt{9 - x^2}}$$

2.
$$\int \frac{dx}{(4x^2-1)^{3/2}} \ dx$$

- 3. $\int_3^4 \frac{1}{\sqrt{x^2 6x + 10}} dx$ Hint: First, complete the square, then use a trig sub.
- 4. (bonus, if you have time) Earlier in the course we mentioned that it is not easy to compute the integral $\int \sqrt{a^2 x^2} \ dx$

Using a trig substitution, now you can compute it. Do so!

Hint: Along the way, you'll encounter the integral $\int \cos^2 \theta \ d\theta$. The easiest way to compute this is to use the double angle identity $\cos^2 \theta = \frac{1+\cos(2\theta)}{2}$ and then integrate. However, don't forget that you still have to express your answer back in terms of x.