\qquad

Quiz 5-take home - Due Tue. Mar. 30

Panther ID:

MAC 2313 - Spring 2010

1. (8 pts) Suppose that a gaseous spherical star of radius a has density function $\delta=k\left(1-\frac{\rho^{2}}{a^{2}}\right)$, so its density varies from $\delta=k$ at its center to $\delta=0$ at its boundary $\rho=a$. Show that its mass is $\frac{2}{5}$ that of a similar star with uniform density k.
2. (12 pts) (a) Use integrals to find the coordinates (\bar{x}, \bar{y}) of the centroid G of the triangular region with vertices $(0,0),(a, 0),(b, c)$. (By choosing the coordinate system appropriately, any triangle can be assumed like this.)
(b) Use vectors and your result in part (a), to show that the centroid G is on each median of the triangle and divides each median in a ratio of $2: 1$. (A median in a triangle is the line-segment that joins a vertex to the midpoint of the opposite side.) Thus, you proved that the three medians of a triangle intersect at the centroid of the triangle.
