NAME: \qquad
Quiz 6 - Take home - Due Tue. April 13

Panther ID:
MAC 2313 - Spring 2010

1. Let $\mathbf{F}(x, y)=\frac{y}{x^{2}+y^{2}} \mathbf{i}-\frac{x}{x^{2}+y^{2}} \mathbf{j}$. Note that the vector field is not defined at $(0,0)$.
(a) (6 pts) Show that curl $\mathbf{F}=\mathbf{0}$.
(b) (7 pts) Part (a) implies that on simply connected regions not containing $(0,0)$ the field is conservative. Find a potential $\phi(x, y)$ for the field on such regions.
(c) (7 pts) Show that

$$
\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r} \neq \int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}
$$

where C_{1} and C_{2} are the semi-circular paths from $(1,0)$ to $(-1,0)$ given by:
$C_{1}: x=\cos t, \quad y=\sin t, \quad 0 \leq t \leq \pi ;$
$C_{2}: x=\cos t, \quad y=-\sin t, \quad 0 \leq t \leq \pi$.
(d) (4 pts bonus) Can you explain why parts (b) and (c) are not contradictory?

